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3 Introduction

3.1 Overview

 
GFAS is a finite element package that has been developed specifically for the
analysis of deformation and stability analysis in geotechnical engineering
problems. GFAS is an easy-to-use yet powerful geotechnical-engineering tool for
the linear and nonlinear analysis of homogenous or non-homogenous structures in
which soil models are used to simulate the soil behavior. It features a full
graphical interface for pre-processing or post-processing and uses the Finite
Element Method (FEM) for 2D solids for its analysis purposes. The graphical
interface enable a quick generation of complex finite element models, and the
enhanced output facilities provide a detailed presentation of computational results.
The analysis procedures are fully automated and based on robust numerical
procedures.
 
The basic program features include:
 
·        Graphical input of geometry models: The input of soil layers, structures,
loads and boundary conditions is based on convenient CAD drawing procedures,
which allows for a detailed modeling of the geometry contour. From this geometry
model, a 2D finite element mesh is easily generated.

·        Automatic mesh generation: GFAS allows for automatic generation of
structured and unstructured 2D finite element meshes with options for global mesh
refinement. The program contains a built-in automatic mesh generator that
considerably simplifies construction of the finite element model. Both triangular
(3-noded or 6-noded) and quadrilateral (4-noded or 8-noded) elements are
available.

· Higher-order elements: Quadratic 8-node and 6-node triangular elements
are available to model the deformations and stresses in the soil.

· Optimization of the matrix bandwidth to reduce the computer storage and
calculation time can be performed by the program using internal re-numbering of
the system equations.
 
· Staged constructions: Complex multi-stage models can be created and
analyzed such as: tunnels, excavations, embankments, soil reinforcement, etc.
 
·        Beam-column elements: The program offers a wide range of support
modelling options such as liners, anchors and geotextile. The beam -column
elements in either Bernoulli or Timoshenko theory are incorporated in the code
and enabled the user to create complex finite element models in which both plane
and line elements interact each other. Liner elements can be used in the modelling
of tunnel lining or sheeting structures. Bolt types include end anchored or fully
bonded. These elements can be assigned anywhere in the mesh.
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 ·        Steady state flow analysis: The program includes the steady state flow
analysis built right into the general program. Water pore pressures are determined
as well as flow and gradient based on user defined hydraulic boundary conditions
and material permeability. The water pore pressures are automatically
incorporated into the finite element stress analysis.
 
·        Dynamic and seismic analysis: The program allows the users to carry out a
dynamic analysis for determining the eigen values and eigen mode for construction
and consequently to determine the seismic forces according with Eurocode 8.
 
·        Elasto-plastic material models: The present release offers the following
models: Mohr-Coulomb and Von-Misses models for elasto-plastic behavior of
plane elements. Both models are robust and simple non-linear models and are
based on soil parameters that are well known in engineering practice. Both
anchored and geotextile elements could have either a linear elastic or elasto-
plastic behaviour.

3.2 Analysis capabilities

 
The general objective of GFAS is to provide analytical tools for deformation and
stress assessment of plane structures in direct support of geotechnical analysis.
 
The program provides three basic analysis tools:
 
The Linear Eleastic Analysis tool can be used to perform a finite element analysis
of a membrane of any general geometry subjected to plane stress, plane strain or
axisymmetric stress and strains. The conditions of plane stressand plane
strainare two similar two-dimensional states of stress. When forces are applied to
a thin two-dimensional plate in its own plane, the state of stress and deformation in
the plate is called plane stress. A typical example would be a shear wall that, due
to it being a thin plate, will experience mainly in-plane stresses. No restraint is
provided for out-of-plane deformation. On the other hand, a prismatic solid
subjected to a constant loading normal to its axis can be analyzed as an infinite
length of two-dimensional slices of unit thickness experiencing plane strain. A
dam wall, for example, would typically be subjected to hydrostatic and soil
pressures normal to its surface. A slice is taken from the wall will be restrained
from deforming out-of-plane.
 
 
The Bearing Capacity Analysistool can be used to compute the response to
loading of a nonlinear material. Plane strain conditions are enforced and in order
to monitor the elasto-plastic behavior, the loads are applied incrementally. The
method uses constant stiffness iterations, thus the relatively time consuming
stiffness matrix factorization process is called just once, while the backward
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substitution phase is called at each iteration. Several failure criteria have been
implemented for representing the strength of soils as engineering materials. For
soils with both frictional and cohesive components of shear strength Mohr-
Coulomb failure criteria is appropriate. For undrained clays, which behave in a
"frictionless" manner, Von-Misses failure criteria may be used.
 
 
The Slope Stability Analysistool can be usedto carry out the slope stability
analysis of a given structure. During the analysis the program gradually reduces the
basic strength characteristics of the soil mass until failure occurs. The factor of
safety (FS) is to be assessed, and this quantity is defined as the proportion by
which tan F  (friction angle) and c (cohesion) must be reduced in order to cause
failure with the gravity loading kept constant. This is in contrast to the bearing
capacity analysis in which failure is induced by increasing the loads with the
material properties remaining constant. The program can give information about
the deformations at working stress levels and is able to monitor progressive
failure including overall shear failure. The present release can be applied only for
two-dimensional plain-strain problems. Either the Mohr-Coulomb or Von-Misses
constitutive models can be used to describe the soil or rock material properties.
Gravity loads are generated automatically and applied to the slope in a single
increment. A trial strength reduction factor loop gradually weakness the soil
parameters until the algorithm fails to converge. The factored soil strength
parameters that go into the elasto-plastic analysis are obtained from:

where SRF is strength reduction factor. Several increasing values of the SRF
factor are attempted until the algorithm fails to converge, at which point SRF is
then interpreted as the factor of safety FS. This actually means that no stress
distribution can be achieved to satisfy the failure criterion and global equilibrium.
Non-convergence within a user-specified number of iterations in finite element
program is taken as a suitable indicator of slope failure and is joined by an
increase in the displacements. Usually the value of the maximum nodal
displacement just after slope failure has a big jump compared to the one before
failure.
 
The Staged Analysis option can be used to carry out staged construction analysis.
During the Staged construction analysis, the loads are increased from 0 to 1, for
each stage of construction. As soon as the load parameter reaches the value of 1.0,
the constructions stage is completed and the analysis of the current phase is
completed, and go the the next phase of the construction. If a staged construction
calculations finishes while the load factor is smaller than 1.0, the program will
stop the analysis. The most likely reason for not finishing a construction stage is
that a failure mechanism has occurred.
 



GFAS7

© 2024 GeoStru Software

4 Mesh generation

4.1 Introduction

The finite element method requires dividing the analysis region into several sub-
regions. These small regions are the elements, which are connected with adjacent
elements at their nodes. Mesh generation is a procedure of generating the
geometric data of the elements and their nodes, and involves computing the
coordinates of nodes, defining their connectivity and thus constructing the
elements. Here, mesh designates aggregates of elements, nodes and lines
representing their connectivity. Capability and convenience of modeling the
analysis domain are dominated by the mesh generation procedure. The geometric
characteristics of generated elements affect the overall performance and accuracy
of the finite element analysis. Therefore, mesh generation is one of the most
important procedures in finite element modeling.
 
A mesh of isoparametric quadrilateral or triangular is automatically generated and
optimized during analysis. You can specify the grid spacing in the X and Y-
directions as part of the analysis parameters. A finer grid will often improve
accuracy. However, the time taken to perform an analysis is a function of the
number of finite elements – the finer the grid, the longer the analysis time.
 
GFAS uses two types for finite element mesh generation: block mesh generator
(structured mesh) that requires some initial form of gross partitioning and
unstructured mesh generator (constraint automatic triangulation). In the first
approach the solution domain is partitioned in some relatively small number of
blocks. Each block should have eight-node quadrilateral form. Mapping technique
generates the mesh inside the block. In the second approach the mesh is generated
for an arbitrarily shaped region. The mesh is generated simply by designating the
curves of the mesh boundary and issuing a mesh generation command. A curved
surface as well as a plane may be meshed by this method. Also you can generate a
coarse mesh (i.e. the gross geometry of the model) that can be refined later using
the tools provided by GFAS specifically for this purpose. Removal of elements
and renumbering of the mesh options are also allowed through the GFAS
processors. During the mesh generation phase it is not required to make a decision
on the element type to be used. Only the element class is important at this stage
(triangular or quadrilateral). For instance: 3-noded triangular elements can be used
to generate the mesh and then the entire mesh can be converted to the higher-order
6-noded triangle elements. In the phase of the analysis definition it has to be
decided if the element is axisymmetric, plane stress or plane strain.
 
The basic mesh generator features include:
 
ÜAutomatic mesh generation: T3, T6, Q4, Q8.
ÜNodes renumbering: Reverse Cuthill-McKee algorithm implemented for T3, T6,
Q4, Q8  finite elements meshing.
ÜTransform simple (T3, Q4) to higher order finite elements(T6, Q8).
ÜRegions and Material data recognition: after mesh generation, properties such as
material type(for each finite element) and region subdivision can be revealed in
the framework of the further mesh manipulation.
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ÜMesh refinements: automatic mesh refinement for all of the above finite elements
types (T3, Q4, T6, Q8).
ÜMask finite elements: Allowed to cut selected elements in order to create
complex geometry.

 
         

Fig.1. Element types in mesh generation.
 

 

4.2 Structured mesh generation

4.2.1 The Quadrilateral Region

 
The mesh generation for any two-dimensional domain into elements should start
with the division of the body in consideration into quadrilateral or triangular
regions. These regions are then subdivided either into triangle or quadrilateral
finite elements. The subdivision between regions should be located where there is
a change in geometry or material properties. GFAS uses a group of eight-node
(quadratic) quadrilateral regions to define the body under consideration, being
capable of modeling two-dimensional domains that are composed of rectangles
and triangles having second-order curved boundaries. The element nodes are
numbered and optimization of the matrix bandwidth to reduce the computer storage
and calculation time can be performed by the program using internal re-numbering
of the system equations.
The region available in GFAS is the quadratic quadrilateral. This element is quite
versatile, it can be used as a rectangle, general quadrilateral, or as a triangle as
shown in Figure 2. Two sides of the quadrilateral are used to define one side of
the triangular region. The eight nodes that define the region must be numbered as
shown in the Figure 2. Node 1 is always at the coordinate location x=h=-1. Note
that one of the corner nodes (node 5 in Figure 2) will always be on the hypotenuse
of the triangular region. The region is then subdivided either in triangular elements
or quadrilateral elements using the mapping technique.
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 Fig. 2. Possible regions for the quadrilateral. Nodes numbering.

4.2.2 Mapping technique

 
Mapping techniques transform a parent region with regular grid spacing to a more
arbitrarily shaped region. For a unit square, the region being mapped should have
four logical sides and four rather natural corners (Fig.3).

Fig.3. Mesh generation with mapping technique.
  

Suppose we want to generate a quadrilateral mesh inside a domain that has the
shape of second-order quadrilateral. Mapping technique shown in Fig.3 can be
used for this purpose. If each side of the curvilinear quadrilateral domain can be
approximated by parabola then the domain looks like 8-node isoparametric
element. The domain is mapped to a square in the local coordinate system x, h.
The square in coordinates x, h is divided into rectangular elements then nodal
coordinates are transformed back to the global coordinate system x, y. The
algorithm of coordinate computation for the nodes inside the domain is given
below:
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(1)

 

 where  and represents the number of elements in x and h direction
respectively and where the shape functions Nk defined in local coordinates  x, h (-

1£ x£1; -1£h£1) are:

(a) for bi-linear elements:

k=1,2,3,4

(2)

                                             
 
(b) for quadratic elements:

(3)
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4.2.3 Automatic meshing

The region can be subdivided into triangular or quadrilateral elements by
considering four nodes that form a quadrilateral such as the area in Fig.4. There
are two types of automatic triangulation for mesh generation, i.e. quadrilateral
division and Delaunay technique. Either linear or quadratic order can be
selected: linear elements (3-node triangle or 4-node quadrilateral); quadratic
elements (6-node triangle or 8-node quadrilateral). When the mesh has been
generated, this plan grid then serves as the reference for the assignment of all
material properties, supports and loadings that are placed on the grid using the
mouse.

4.2.4 Quadrilateral division

 
When the nodes of the model have been generated, the next step is to define the
elements. The region is subdivided into triangular elements by considering four
nodes that form a quadrilateral such as the area in Fig. 4. The interior
quadrilaterals can be left as elements or they may be further divided into
triangular elements by inserting the shortest diagonal into each interior
quadrilateral. The length of the two diagonals are calculated and compared. The
elementary quadrilateral is then subdivided into two triangular elements using the
shortest diagonal. This procedure is repeated until all sets of four nodes havebeen
analysed. Division using the shortest diagonal is preferable because elements
close to an equilateral shape produce more accurate results than long narrow
triangles.
 

Fig. 4. A set of four nodes divided into two triangular finite elements.
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4.2.5 Delaunay triangulation

Having generated the sample points inside the regions, using the mapping
technique, the finite element mesh could be generated also using the well-known
Delaunay triangulation technique.
 
A counterclockwise numbering is used for local element nodes as shown in Figure
5.
 
 

Fig. 5. A counterclockwise numbering of finite element nodes.

4.2.6 Region connectivity

 
A body or domain is generally modeled using several quadrilateral regions
connected to one another along one or more sides. The possibility of a common
boundary between two regions requires that certain information be provided to
insure that the nodes on this common boundary have the same numbers regardless
of which region is being considered. The number of nodes on this boundary must
be identical in number and must occupy the same relative position. This property
is necessary to insure continuity across the element boundary.
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Fig. 6.  A connected set of four quadrilateral regions.
 

 The determination of the connectivity data is probably best illustrated through an
example such as the four-region body as shown in Fig.6. The boundary nodes
coordinates are shown in Table 1 while the region's data (the number of divisions,
the quadrilateral nodes numbering) is shown in table 2.
 

Table 1. Coordinates of boundary nodes.
 

N
o
d
e

X
[
m
]

Y
[
m
]

1 0 0

2 1
0

0

3 2
0

0

4 3
0

0

5 4
0

0

6 4
1
.
5
2

-
7
.
6
5

7 4
5
.
8
6

-
1
4
.
1
4

8 5
2
.
3
5

-
1
8
.
4
8

9 6
0

-
2
0



Mesh generation 14

© 2024 GeoStru Software

1
0

6
0

-
2
7
.
5

1
1

6
0

-
4
0

1
2

4
0

-
4
0

1
3

2
0

-
4
0

1
4

3
7

-
2
3

1
5

1
0

-
4
0

1
6

0 -
4
0

1
7

0 -
2
0

1
8

2
0

-
2
0

1
9

4
0

5

2
0

4
0

1
0

2
1

3
0

1
0

2
2

2
0

1
0

2
3

2
0

5

 

Table 2. Region's data.
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Fig. 7. The mesh. Delaunay triangulation.

 
 

4.3 Unstructured mesh generation

 
The easiest way of generating mesh on a plane is unstructured mesh generation
with Delaunay constraint triangulation. For an arbitrarily shaped region or
connected regions the mesh is generated automatically by designating the interfaces
or the holes of that domain. You can easily fill an arbitrarily shaped region with
triangular elements using automatic triangulation as described below. For
successful automatic triangulation, curves or polylines should be selected so that
they may form a region compatible for mesh generation as described below.
·        A region is formed from one or multiple interfaces.
·        The outer boundary of the region should be enclosed by serially connected
lines or curves.
·        The region boundary may be either convex or concave.
·        The region may contain holes or control curves inside the boundary.
The following examples illustrate mesh regions compatible and incompatible for
automatic triangulation.
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Figure 8. Compatible region for automatic triangulation.
 

(a)   The lines do not form a
closed boundary

(b)   The lines ar not contained
within the boundary of the

region

(c)   Two curves are containing at point which is not a common node

Figure 9. Incompatible regions for automatic triangulation.
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4.4 Mesh editing

GFAS allows editing or modifying the mesh. The current release has several
functions of mesh editing.

4.4.1 Mesh refinement

4.4.1.1 Local mesh refinement

 
A regular mesh, all elements the same size and shape, usually is not practical
because of stress concentrations. Shifting of mid-side nodes closer to some corner
of the domain helps to refine (make smaller elements) mesh near this corner. The
size of the elements can be varied by placing nodes 2, 4, 6, or 8 at some point
other than the center of the side. Movement of these nodes shifts the origin of the
coordinate system and produces a pattern similar to the one in Fig.10. These mid
side nodes must remain within the interval:
  

(4)

                                                       

Fig. 10. A region with a change in element size.
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4.4.1.2 Global mesh refinement

In order to reduce the size of the initial finite element mesh, global mesh
refinement can be done at run time. Once you have generated a coarse model, you
can refine it to the desired level. It allows much smaller input data files and adds
the flexibility of increasing the mesh resolution without re-meshing the model with
a mesh generator. The global refinement scheme is very simple, because it just
splits up every finite element into four "children" (Fig.11). If this scheme is
applied to the whole finite element mesh, its structure remains consistent (Fig.12).
The quality of the mesh is preserved. This feature is implemented for all finite
element types supported by the code.

Fig.11 Global refinement of a "parent" finite element into four
"children".

Fig.12 Automatic mesh refinement (h-refinement).

As a result, the input data files and especially the file containing the mesh
geometry are much smaller. Even more important, the mesh generator does not
have to generate a very fine and therefore large mesh, even though it has to be fine
enough to resolve the details of the geometrical model and should give finite
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elements of good quality. Moreover, convergence of the results can be easily
checked with a refined finite element mesh (Fig.12).

4.4.2 Deleting meshes

The finite element model options allow convenient addition or deletion of
elements in order to create complex geometry. After deleting a portion from the
model all the properties assigned to the rest of model are preserved (i.e. region
number, material properties). Also renumbering of the nodes is automatically run
in order to reduce the bandwidth of the resulted system of equations.

4.4.3 Nodes renumbering

Numbering of nodes has a definite influence on the bandwidth of the coefficient
matrix associated with the mesh. The smaller the bandwidth the less storage and
amount of computation required. The method used, for this purpose, is nodes
renumbering by the RCM (Reverse Cuthill-McKee) method. With this method the
formed matrix will be sparse and regularly banded, so that it can be solved
economically.

4.4.4 Transforming meshes (p-refinement)

After mesh generation of the body with simple finite elements either triangular
(T3) or quadrilateral (Q4) GFAS allows to transform the generated elements to
higher-order finite elements (T6 or Q8). This feature is particularly desirable,
since convergence of the results can be easily checked with a p-refined finite
element mesh generated in this way. If this scheme is applied to the whole finite
element mesh, its structure remains consistent (Fig.13). The quality of the mesh is
also preserved.
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Fig. 13 Transform meshes from simple to higher-order elements (p-refinement).

5 Formulation of the element matrices and vectors for
elasticity problem

 
The finite element problem consists of calculating the individual element stiffness
matrices and vectors, and assembling them into the global stiffness matrix and
force vectors. The set of simultaneous equations that this produces is then solved
for the nodal displacements.
 
The stress vector s  and the strain vector e are, respectively (Figure 14):

(5)

 
                                    

Fig. 14. Components of the stress.

The stress-strain relation is represented as:

(6)
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or as:

(7)

where C is a symmetric matrix of material compliances, E is a symmetric matrix
of material stiffness, and E=C-1. The components of the displacement vector u
along x, y and z directions are u, v, and w respectively. The following sign
convention is used: Positive y-coordinates and vertical forces are taken upward,
i.e. parallel to the Y-axis. Positive x-coordinates and horizontal forces are taken to
the right, i.e. parallel to the x axis. The vertical deflections are measured along the
y-axis. A positive deflection therefore denotes an upward movement.
 

Fig. 15.  Stresses and body forces that act on a plane differential
element of constant thickness.

 

5.1 Equilibrium equations

 
Figure 15 shows a plane differential element. The equilibrium equations are
developed stating that the differential element is in equilibrium under forces
applied to it. Forces come from stresses on the edges and from body forces. In
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general, stresses and body forces are functions of the coordinates. Thus, for

instance,  is the rate of change of  with respect to x, and  is the

amount of change of over distance dx.
The stresses in the structure must satisfy the following equilibrium equations:

(8)

                                                       
where fx and fy are body forces , such as gravity forces, per unit volume. In the

finite element method, these equilibrium equations are satisfied in an approximate
sense.

5.2 Boundary conditions

 
Boundary conditions consist of prescription of displacement and of stress. The
boundary S of the body van be divided into two parts, Su and St. The boundary

conditions (BC's) are described as:

Fig. 16. Boundary conditions.

              on Su

(9)

       

 on St 

(10)
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in which tx and ty are traction forces (stresses on the boundary) and the barred

quantities are those with known values.

5.3 Strain-Displacement Relations

 
For plane structures, under the small strain and small rotation hypotheses we can
write the following relations between deformations and displacements:
 

 (11)

                                
or in matrix form:

(12)

                                                   
or in a condensed form:

(13)
                                                               
where u and v are the components of displacements in the x and y directions. If the
displacement field is represented by polynomials, the strains and stresses are one
order lower than the displacements.

5.4 A General Formula for the Stiffness Matrix

 
Consider a linearly elastic body that caries conservative load. Let its volume be V
and its surface area be S. The expression for the potential energy in a linearly
elastic body is:
 

 (14)
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in which

 represents the displacement field;

represents the strain field;

the elastic constants matrix (material property)

 , initial strains and initial stresses;

body forces;

surface tractions;

 represents the nodal d.o.f. displacements

loads applied directly to d.o.f.

Displacements within an element are interpolated from element nodal d.o.f. d as:

 (15)
                                                             
where N is the shape function matrix.
Strains are obtained from displacements by differentiation.

(16)
                                           
 where  

(17)
                                                              
and represents the strain-displacement operator. The differential operator matrix

is given in the case of the plane problems as:

(18)

                                                    
Substitution of the expressions for  and into Eq. 14 yields:

 (19)

                                     
where summation symbols indicate the we include contribution from all finite
elements of the structure, and the element stiffness matrix and element equivalent
nodal loads vector are defined as:

(20)
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 (21)
    
                                
where Ve denotes the volume of an element and Se its surface and in the surface

integral the shape function matrix is evaluated on Se.

Every degree of freedom in an element displacement vector d also appears in the
vector of global structural d.o.f. D. Therefore D can replace d in Equation (14) if
k and re of every element are conceptually expanded to structure size. Thus Eq.

(14) becomes:

(22)
                      
where

(23)

                                                    
represents the global stiffness matrix and nodal force vector expanded in global
coordinates at structure level. In the Eq.(22) the summation operator indicate the
assembly of elelemnt matrices and vectors.
This way the total potential Wp of the structure is represented as a function of d.o.f.

D. Making Wp stationary with respect to small changes in the vector D we can

write:

 (24)

                                                
or explicitly:

(25)

                                              
 yielding the following simultaneous algebraic equations to be solved for n
unknowns representing the displacements collected for each d.o.f. of vector D:

(26)
                                                 
where n represents the number of total d.o.f. of structure, K and R represents the
global stiffness matrix and nodal loads vector assembled for the entire structure.
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5.4.1 Plane strain

This case is defined as a deformation state in which w=0 everywhere and u and v

are functions of x and y but not of z. Thus, . A typical slice of an
underground tunnel that lies along the z axis might deform in essentially plane
strain conditions. The constitutive matrix E for isotropic plane strain is:

(27)

                                          

If needed, can be obtained from the relation after

and are known.

 
 

5.4.2 Plane stress

Thus is a condition that prevails in a flat plate in the xy plane, loaded only in its

own plane and without z-direction restraint, so that  Then, constitutive matrix
is:

 (28)

where E is the Young's modulus, n the Poisson's ratio.

5.4.3 Axisymmetric case

 
Axisymmetric elementsare defined as having a constant value of displacement in
the circumferential or q direction. These are similar to the two-dimensional
element, except that it is used in the r-z plane as shown in Fig. 17.
The stress and strain components for the element are:
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 (29)

                                               
where the strains are defined as follows, with u and w being the displacements in
the r and z directions respectively:

(30)

                               

Fig. 17.  Basic axisymmetric element and stress components.
                       

 
The constitutive matrix that linking the stresses and strains is:

(31
)

 
                                                  
where E is the Young's modulus, n the Poisson's ratio.
The two-dimensional isoparametric finite elements employed in GFAS are linear
and quadratic triangles and quadrilaterals. Isoparametric finite elements are based
on the parametric definition of both coordinate and displacement functions. The
same shape functions are used for specification of the element shape and for
interpolation of the displacement field.
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5.5 Finite element types

Displacements (u, v) in a plane element are interpolated from nodal displacements
(ui, vi) using shape functions Ni as follows:

 (32)

                                         
(33)

                                                                          
where N is the shape function matrix, u the displacement vector and d the nodal
displacement vector. Here we have assumed that u depends on the nodal values of
u only, and v on nodal values of v only.
 
 From strain-displacement relation, the strain vector is:

 (34)

                                                               
where

(35)
                                                              
is the strain-displacement matrix.
 
Consider the strain energy stored in an element:

(36)
 
      
From this, we obtain the general formula for the element stiffness matrix:

 (37)

                                                              
where the constitutive matrix E is given by the stress-strain relation. The stiffness
matrix k defined by the above formula is symmetric since the constitutive matrix E
is symmetric.
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5.5.1 Constant strain triangle (T3)

 
The two-dimensional simplex element is a triangle as shown in Fig. 18, it has two degrees
of freedom at each node. It is also called linear triangular element.
 

Fig. 18. Linear triangle finite element (T3)
 .
 
For this element, we have three nodes at the vertices of the triangle, which are numbered
around the element in the counterclockwise direction. Each node has two degrees of
freedom (can move in the x and y directions). The displacements u and v are assumed to be
linear functions within the element that is:

 (38)

                                           
 The constants a and b are determined imposing the nodal conditions. Solving the system of
equations we can find the coefficients in terms of nodal displacements and coordinates.

 

Fig. 19 The natural coordinates for linear triangle finite element

 
Introducing the natural coordinates (x, h) on the triangle (Fig.19), the shape functions can be
represented by:

 (39)

                                    
Thus, in terms of nodal d.o.f the displacement field is:
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 (40)

                               
We have two coordinate systems for the element: the global coordinates (x, y) and the
natural coordinates (x, h). The relation between two is given by:

(41)

                                                
Displacement u or v on the element can be viewed as functions of (x, y) or (x, h). Using the
chain rule for derivatives, we have:

 
(42)

                                            
where J is called the Jacobian matrix of the transformation.

5.5.2 Linear Strain Triangle (T6)

This element is also called quadratic triangular element.
There are six nodes on this element: three corner nodes and three mid-side nodes (Fig.20).
Each node has two degrees of  freedom (DOF). The displacements (u, v) are assumed to be
quadratic functions of (x , y).
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Fig.20. Quadratic triangular element.
 
 

(43)

 
                                  

From these, the strains are linear functions, thus we have the "linear strain triangle" (LST),
which provides better results than the CST.
 
In the natural coordinate system, defined earlier, the six shape functions for the LST element
are:

(44)

 
                                                               

in which .

Displacements can be written as:

 (45)

                                                      
The element stiffness matrix is still given by:

 (46)

                                                             
but here BTEB is quadratic in x and y. The integral is computed numerically.

5.5.3 Linear Quadrilateral Element (Q4)

 
 There are four nodes at the corners of the quadrilateral shape (Fig.21). In the natural
coordinate system (x, h), the four shape functions are:
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Fig. 21. Linear quadrilateral element (Q4).
 

(47)

 
                                                       

The displacement field is given by:

(48)

                                                   
which are bilinear functions over the element.

 

5.5.4 Quadratic Quadrilateral Element (Q8)

 
There are eight nodes for this element, four corner nodes and four mid-side nodes (Fig.22).
In the natural coordinate system (x, h), the eight shape functions are:



GFAS33

© 2024 GeoStru Software

(49)

                                     
 
The displacement field is given by:

 

(50)

                                                       
which are quadratic functions over the element. Strains and stresses over a quadratic
quadrilateral element are linear functions that are better representations.
 

Fig.22. Quadratic quadrilateral element (Q8).
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5.6 Numerical integration in finite elements

Integration of expressions for stiffness matrices and load vectors can not be
performed analytically for general case of isoparametric elements. Instead,
stiffness matrices and load vectors are typically evaluated numerically using
Gauss quadrature rule over triangular or quadrilateral regions. The Gauss
quadrature formula for the domain integral in two-dimensional case (natural
coordinates) is of the form:

 (51)

  

where ,  are abscissas and Hi are weighting functions of the Gauss integration

rule.
 
The sampling points and weighting functions used for quadrilateral elements are
shown in Table 3.
 
A pattern of either 2 x 2 or 3 x 3 sampling points is used, depending on the order
of the function to be evaluated. Generally the four-point formula is used for the 4-
noded quadrilateral, while the nine-point formula is used for the 8-noded element.
 
The general 8-node quadrilateral element stiffness matrix contains fourth order
polynomial terms and thus requires nine sampling points for exact integration. It is
often the case, however, that the use of "reduced" integration by using the four
integration points improves the performance of this element. This is found to be
particularly true in the plasticity applications.
 
 

          Table 3. Gauss quadrature weights and sampling points for quadrilateral
elements.

Sampling
points

location

Deg
ree
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poly
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ial

n Coordi
nates

Weigh
ting
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x h

 

 
 
 

1 1 0 0 4

 
3 4 -

1
-
1

1
1
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          Table 4. Gauss quadrature weights and sampling points for triangular
elements.
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Sampling
points

location

Deg
ree
of

poly
nom
ial

n Coordi
nates

Weigh
ting

functi
ons

x h

 
 

1 1
1
/
3

1
/
3

1/2

 

 

 

2 3

 
1
/
2
1
/
2
0
 

1
/
2
0
1
/
2

1/6
1/6
1/6

 
 
The weights and quadrature points for triangular elements (constant strain triangle-
T3 and linear strain triangle-T6) are summarized in Table 4.
 

5.7 Stress calculation

 
After computing the element matrices and vectors, the assembly process is used to
compute the global equation system. Solution of the global equation system
provides displacements at nodes of the finite element model. Post processing of
the results is then required to calculate the strains and stresses in each element. For
elasticity problems, the strains in an element are calculated from the displacements
by:
 

(52)
                                                               
In simplex elements (CST-T3 for instance) the strain-displacement matrix B is a
constant, and the strains are constant, and therefore can be computed anywhere in
the element. For the higher-order elements, however, B is a function of the
coordinate system (displacements) and not always explicit. Therefore the strains
must be evaluated at specific positions in such elements. The most accurate
locations are the sampling points used to calculate the strain-displacement matrix
B and the stiffness matrix k.
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Stresses are calculated with the Hook's law. These stresses can be computed
anywhere in the element but have best precision at the Gaussian integration points
used for the stiffness element formulation. For instance for the 4-noded
quadrilateral element the stresses have best precision at 2x2 integration points as
shown in the Figure 23.
 

Fig.23. Extrapolation from 4-node quadrilateral sampling points; (a) 2
x 2 rule. (b) Gauss element (e')

 

In order to build a continuos field of stresses it is necessary to extrapolate result
values from the integration points to the nodes of the finite element. The stresses of
the nodes, particularly those at the corners of the element, are more useful. To
calculate the nodal stresses, either the B matrix must be calculated at the nodes, or
the stresses must be interpolated from the values at the sampling points. A possible
way to create continuos stress field with reasonable accuracy consists of: 1)
extrapolation of stresses from reduced integration points to nodes; 2) averaging
contributions from finite elements at all nodes of the finite element model. The
interpolation-extrapolation process is described as follows.
 
Let’s assume that stresses have been computed at the four Gauss points of a 4-
noded quadrilateral plane element (points 1’, 2’, 3’ and 4’). We now wish to
interpolate or extrapolate theses stresses to other points in element. In Figure 23
the coordinate x’ is proportional with x and h’ with h. At point 3’ x’=1 and h’=1
and x=h=1/Ö3. That is

(52)

                                                           
Stresses at any point P in the element are found by the usual shape functions
assumed for the displacement field interpolation:

 (53)

                                                              
where s is sx, sy, txy respectively. The shape functions Ni are the bilinear shape

functions:
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 (54)

                                                    
The shape functions are evaluated at the x’, h’ coordinates of point P. For
example, let point P coincide with corner A. To calculate stress sx at this node

from sx calculated at the four Gauss points we substitute x’= h’=Ö3 into the shape

functions defined above and apply the formula given by the Eq.(53).
In the cases of triangular elements similar approach is applied. For instance for
higher order 6-noded triangular finite element and three sampled Gauss points the
stresses at any point in the element are computed using the shape functions as:

(55)

                                                   
where the shape functions Ni

(56)

                                                    
are computed at the x’, h’ coordinates:

(57)

                                            
As already stated these quadratures are lower order for higher order elements and
repsesents the so called reduce integration scheme. The reduced integration
scheme may be desirable for two reasons. First since the expense of generating a
finite element matrix by numerical integration is proportional to the number of
sampling points, using fewer sampling points means lower cost. Second, a lower-
order rule tends to soften an element, thus countering the overly stiff behavior
associated with an assumed displacement field. Stresses are usually averaged at
nodes in FEA software to provide more  accurate stress values. This option should
be turned off at nodes between two materials or other discontinuity locations
where discontinuity does exist. The stresses and strains at the centre of the element
will be obtained through extrapolation of the stresses from the Gauss integration
points.
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Fig. 24. Super convergent Patch Stress Recovery.
 

Moreover in the computer program is implemented a very efficient technique
called Super Convergent Patch Stress Recovery (SCP). Basically the method use
the concept of the local patch of elements sampled at their integration points to
yield a smooth set of least square fit nodal stresses (Fig. 24). As noted earlier, the
integration points are special points where the stresses have the best values, those
gradient locations match those of polynomials of one ore more degrees higher.
 

Fig. 25. Principal stresses.
  
 
The user is often interested not only in the individual stress components, but in
some overall stress value such as Von-Misses stress. In case of plane stress, the
Von-Misses stress is given by:
 

 (58)

                                           
where s1 and s2 are principal stresses given by:

 (59)

                         
The angle formed by the principal stresses directions may be also computed (Fig.
25):
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The postprocessor display the stress contour, which typically are smoothed by
working from nodal average stresses. These contours may be plotted as “stress
bands” by designating equally spaced stress intervals, locating the areas of each
element that fall into each interval, and using different colour to plot each interval.

5.8 Consistent element nodal loads

The consistent element nodal loads vector re given by the Eq. (21) converts loads

distributed throughout an element or over its surface or from initial strains or
stress to discrete loads at element nodes. These loads are called consistent
because they are based on the same shape functions as used to calculate the
element stiffness matrix. Moreover these loads are statically equivalent to the
original distributed loading; both re and the original loading have the same

resultant force and the same moment about an arbitrarily chosen point.
These loads are called work equivalent loads for the following reason: work done
by nodal loads  re in going through nodal displacements d is equal to work done by

distributed loads F and F  in going through the displacement field associated with
element shape function:

 (60)

                             
The later integral sums the work of force increments FdS in going through
displacements u where u are field displacements created by d via shape functions
N.
 

5.8.1 Body forces

 
The forces are given by the following equation:

(61)
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which can be detailed for a constant thickness finite element with n nodes as:

 (62)

                                      
where Fx and Fy are the body forces about x and y axis such as gravity forces, inertial forces

etc. For insance the gravity-loading vector , in plane strain state (h=1) is accumulated
element by element from integrals of the type:

(63)

                                    
where g denotes the material density of the element and N the shape function matrix. These
calculations are performed in the same part of the program that forms the global stiffness
matrix. It may be noted that only those freedoms corresponding to vertical movement are
incorporated in the integrals. For instance for 3-noded finite elements the gravitational
forces are computed as:

(64)

                                              
 assuming that the element is referenced in the global system of coordinates such that the
gravitational load acting along y axis.

5.8.2 Distributed forces

The distributed forces are given by the following equation:

(65)

                                                  



Formulation of the element matrices and vectors for elasticity problem 42

© 2024 GeoStru Software

which can be detailed for a constant thickness n-noded izoparametric finite element as:

 (66)

                                
where Qx and Qy are the components of distributed load along the x and y axis, and because

the thickness of the finite element is constant (h=const)  we obtain:

(67)

5.8.3 Initial stress/strain loads

In this case the consistent equivalent nodal loads are given by the first two terms of the Eq.
(21):

(68)

                                       
These nodal loads are self equilibrating, produces zero resultant force and zero resultant
moment. Some particular cases are given in order to illustrate the evaluation of the initial
stress loads.
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5.8.4 Pore pressure loads

The effect of free surface over soil massive is taken into account in two ways; the first
consists in computation of the hydrostatic spectra computing the water pore pressures either
through a rigorous steady state flow analysis and through an external loading due to
reservoir water that act over the massive.
The pore pressures are computed at all submerged (Gauss integration samples) points and
subtracted from the total normal stresses computed at the same locations following the
application of surface and gravity loads. The resulting effective stresses are then used in the
remaining parts of the algorithm relating to the assessment of yield functions and elasto-
plastic stress redistribution.
 
If we denoted p the water pore pressures, meaning a potential of the volume forces, then
over an infinitesimal element acting in both directions x-y of the plane the following forces:

(69)

 
                                     

Let’s assume an finite element e with nodes i,j,k and the potential of the volume forces at
those nodes are pi, pj, pk, then the forces potential for the considered element can be written

as (stores the nodal values of the prescribed pore pressures) :

(70)

                                         
Because for this potential we can chose the same shape functions as for the displacement
field of the finite element, we can write analogous:

(71)

                                        

The effect of water pore pressure produce normal stresses  , for plane strain analysis
given by:

 (72)

                                                           
where for plane strain cases:

 (73)

                                                  
The total stress vector then assumes the following form:

 (74)

                                    
Consequently, the general equilibrium relationship, given by the equation (21)  of the finite
element can be generalized, introducing the following term in the element equivalent nodal
loads vector taking into account in this way the effect of the water pore pressures:
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(75)

                        

5.8.5 Excavation loads

 
When a portion of material (soil) is excavated, either in the open excavations (cuts) or in
enclosed tunnels, forces must be applied along the excavated surface such that the remaining
material should experience the correct stress relief effect and the new free surface is stress-
free. Let us suppose that the body A is to be removed from body B as shown in Figure (26),

and let us denote the stresses in the two part of the body before excavations as  and 
respectively. Any external loads are taken into account in forming these stresses prior to
removal of the body A. Since both bodies are in equilibrium forces FAB must be applied to

body B due to body A to maintain  and, similarly FBA must act on body A. These forces

are equal in magnitude but are opposite in sign. The excavation forces acting on a boundary
depend on the stress state in the excavated material and on the self-weight of that material. It
can be shown that:

(76)

                                   
Where B is the strain-displacement matrix, VA the excavated volume, N the element shape

functions and g the soil unit weight.

(a)   Initial stress state    (b) Forces FAB

(c)   Forces FBA acting on the dislocated volume B
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d   Excavation forces FAB

Fig. 26. Excavation loads

5.8.6 Gravity loading

 
The gravity-loading vector Pa is accumulated element by element from integrals of the type:

 (77)

 
 

where g denotes the material density of the element and N the shape function matrix. These
calculations are performed in the same part of the program that forms the global stiffness
matrix. It may be noted that only those freedoms corresponding to vertical movement are
incorporated in the integrals.

5.9 Assembly and storage strategy

 
The total system matrix (global stiffness matrix) is symmetrical provided its
constituent matrices are symmetrical. The matrix also possesses the useful
property of "bandedness" which means that the terms are concentrated around the
"leading diagonal". This symmetry is also taken into account. The symmetrical half
of a band matrix is stored as a rectangular array with a size equal to the number of
system equations times the semi-bandwidth plus 1. In this case zeros are filled into
the extra locations in the first few or last rows depending on whether the lower or
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upper "half" of the matrix is stored. Special storage scheme, the "skyline"
technique is also implemented. To reduce storage requirements this technique is
recommended. This has the effect of reducing the number of zero terms that would
be stored in the stiffness matrix due to bandwidth variability using conventional
(constant bandwidth) storage methods.

5.10 Incorporation of boundary conditions

Once the element equations have been assembled to give the system equations, the
boundary conditions of the problem must be incorporated.
There are several ways in which the boundary conditions can be incorporated into
the system equations.

5.10.1 Explicit specification of BC's

In the explicit method, the BC's conditions are incorporated through elimination of the lines
and columns associated to the degree of freedoms blocked. This means that the equation
components associated with these nodes are not required in the solution and information is
given to the assembly routine that prevents these components from ever being assembled
into the final system. Thus only the non-zero nodal values are solved for.

 

5.10.2 Imposing prescribed displacements (Penalty method)

This method uses the fact that computer computations have limited precision. The BC's
conditions are handled by adding a "large" number, to the leading diagonal of the stiffness
matrix in the row in which the prescribed value (i.e. a zero values means full fixity of
degree of freedom) is required. The term in the same row of the right hand side vector is
then set to the prescribed value multiplied by the augmented stiffness coefficient. Any
structural degree of freedom can be prescribed in this way. Each prescription adds a large
diagonal stiffness value to the stiffness matrix and also a large value to the load vector if the
prescribed degree of freedom is nonzero. This procedure is successful if "small" terms are
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small relative to "large" terms (i.e. the stiffness matrix coefficients are indeed more small
than the "large" value assumed).

5.10.3 Elastic supports

 
This method is very similar with the penalty method. The spring (elastic support) can be
added to any structural degree of freedom. Each spring adds a prescribed value to the
leading diagonal of the stiffness matrix in the row in which the prescribed value is required.
Elastic supports, or springs, are defined by entering spring constants in the X and/or Y
directions. The spring constant is defined as the force or moment that will cause a unit

displacement in the relevant direction. A very stiff spring (a large value, say 1020) a zero
displacement is enforced.

5.11 Solution of equilibrium equations

 
When the boundary conditions have been incorporated into the system equations,
the final step is the solution for the unknown variables, the nodal displacements.
Two methods have been implemented: Gaussian elimination technique with
constant bandwidth storage scheme and Cholesky decomposition technique
associated with a skyline storage strategy.
 
 

6 Formulation of the beam-column elements

 
In this section we outline the formulation of the line elements such those truss and
beam elements used in the program to model the liners, bolts, anchors and
geosynthetics elements.
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6.1 Bar or truss elements

Figure 27 shows a straight bar whose nodal degrees of freedom are axial and
transversal displacements (ui, vi, uj, vj). A linear displacement field is appropiate.

(78)

                                                                                   

Imposing the limit conditions the displacement field can be rewriten as:

 (79)

                                            

where the shape functions Ni are:

 (80)

                                                                        

and in which .

 

Figure.27. Truss element.
 
The axial strain along the element legth is defined as:

(81)
              
or in the matrix condensation form the displacements and strains relationships can
be expressed as:
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(82)
                                                                              

where

(83)
                        

and represents the strain-displacement operator.
The element stiffness matrix is computed in this case as:

 (84)
 
                      

Where EA represenst tha axial stiffness of the element (E is Young modulus, A
cross-section area) and L the element length. The stiffness matrix k defined above 
relates axial forces at the nodes, to the axial displacements at the nodes, and
represents the stiffness
 
matrix in the local element system. If the bar is oriented at an angle b in the xy
plane, the matrix must be trnasformed by a rotation matrix as:

(85)

                                                            

where for the xy plane the rotation matrix is:

(86)

                                

The element stiffness matrix in the global coordinates system becomes:

(87)

    

6.2 Two-noded beam-column element

 
Figure 28 shows a six degree of freedom straight beam-column element. Rotation θ

is assumed to be small, so that . The displacement field along the
element is assumed to be the following shape (a linear shape for axial
displacements and third degree polynomial for transversal displacements):
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(88)

 

Fig. 28. Beam column element

The third degree polynomial shape has been chosen for the transverse
displacements since for an element loaded only at the nodes the shear forces and
bending moment variation along the element is constant and linear respectively:

 (89)

                                              
Imposing the limit conditions the displacement element field can be rewritten:

 (90)

                                 

where the shape functions Ni in this case are:   
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 (91)

                                                      

and in which . Assuming a linear distribution of the strains along the
cross-section (plain section hypothesis) the strain –displacement relationship is:

 (92)

                                                               

or written in the matrix form:

(93)
        
                                                                                                                             

or in the matrix condensation form the displacements and strains relationships can
be expressed as:

(94)

                                                                                   

 where u represents the nodal displacement vector, and B represents the strain-
displacement operator:

(95)

                                                                              
 (96)

  (97)

                      
                      

or with the following relations:

(98)

                                                                     

and assuming a doubly symmetric cross-sections, the element stiffness matrix can
be computed as:       
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With the definition of moment of inertia and cross-sectional area:

(100)

                                                  

and for constant EI the element stiffness matrix given by the equation (99) is:

 (101)

 
                      

 
A slightly modified form of Eq. (101) is able to account for transverse shear
deformation (Timoshenko beam-column).

   (102)
  
 

where , G represents the shear modulus and As the shear area, and the product GAs
represents the shear rigidity.

The stiffness matrix if for the xy local element coordinate system oriented with the
beam. If the beam is inclined at an angle b to the global coordinate axis X, the
element stiffness matrix in global coordinate system is computed as:

  (103)

                                                     

where the rotation matrix T has the following expression:

(10
4)
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6.3 Joining beam-column elements to plane elements. Dissimilar
elements.

By „dissimilar elements” we mean elements whose d.o.f. are of different type
and/or of different location. As examples,  considering the elements depicted in the
Figure 29, the left end of a beam-column element is to be attached at an arbitrary
location along an edge of plane four-node quadrilateral element, or we may wish
to connect two force member (a truss element) to points arbitarily located along
edges (or inside) of a plane four-noded element.  A way of dealing with these
situations is to impose constraints that force d.o.f. of mating elements to have a
prescribed relation to one anoter. A method of connecting these elements is briefly
described in the following sections.

Figure 29. Dissimilar elements.
 

 

6.3.1 Beam-column element connected to a plane element

 
The beam-column element stiffness relation is:

(105)

                                                       

where the displacement and nodal load vectors are:
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(106)

                                       

We assume that the translational displacements at node i of the beam-column element are
linearly interpolated along edge 2-3 from translational d.o.f at nodes 2 and 3 of plane
element and that rotation θi is the same as the rotation of edge 2-3. In these conditions,

between the beam-column displacements  and the plane element nodal displacements we
can write:

 (107)

                                                                          
 

 where, with  , the transformation matrix T is:

, where
(10
8)

and the displacement vector u contains the displacements of the plane element and
displacements at the free node j of the beam-column element:

(109)

                                              

Applying the principle of virtual displacements if between the displacement u and u’ the
relation (107) holds then for the nodal force vectors r we can write a similar relation as:

 (110)

                                                          

We can argue that since r and r’ describe the same resultant force, and the work done by the
force during a prescribed virtual displacement must be independent of the coordinate system
in which the work is computed. In this conditions, multiply the both terms of eq.(105) with
TT and using the equation (107) for displacement vector u’ the equation (105) becomes:

(111)

                                                             

or in matrix condensed form:

(112)

                                                              

where the modified stiffness matrix of the beam-column element is:

 (113)
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and the modified nodal load vector r is given in equation (111). In this way for the new
element the stiffness relation is given by the eq.(113) and the plane element and beam-
column element can now be assembled to one another or assembled into the rest of the
structure. Node i and its degrees of freedom do not appear in the assembled structures. Node
i may be called a “slave” node because its d.o.f. are completely determined by d.o.f. of
“master” nodes 2 and 3. Similar relations can be obtained in the case when the beam-
column element is mapped in to the higher order plane elements. In this case the nodal
displacements of the beam element are quadraticaly interpolated from translational d.o.f of
plane element nodes.

6.3.2 Truss element connected to a plane element

 
Let us consider the truss element connected to points arbitrarily located along edges of a
plane four-noded element (Fig.30).

Figure 30.
 
 The deformational-stiffness relation for the truss element is written as:

 (114)
                                                             

where k’, u’ and r’ represents the stiffness matrix, displacement vector and nodal force
vector associated with the degrees of freedom of nodes i and j of the truss element:

 (115)

                                                               

With displacements linearly interpolated along edges of the quadrilateral the displacement
transformation for d.o.f. of the truss element can be written in function of the displacements
of the plane element nodes (u), via transformation matrix  T as:

  (116)
                                                                          

Where the transformation matrix T contains terms like those in the eq. (108). For the case
depicted in the Figure 30 the displacement transformation relation can be detailed in the
matrix form as:
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 (117)

 

By transformation, and of the truss element are to be converted to  and which are

associated with the degrees of freedom of the four corner nodes of the quadrilateral. Thus,

 becomes and becomes :

  (118)

                                             

After this transformations the nodal force vector and stiffness matrix can be directly added
to the corresponding arrays of the quadrilateral or assembled into the structure. The nodes i
and j of the truss element and their d.o.f. are not explicitly present, we can say that d.o.f. of

the bar element are constrained to follow d.o.f. of the quadrilateral. Similar relations can be

obtained in the case when the truss element is mapped into the higher order plane elements.
In this case the nodal displacements of the truss element are quadraticaly interpolated from
translational d.o.f of plane element nodes. For instance assuming the six-noded higher order
element crossed by the truss element the displacement transformation relation is:

 (119)

                                                        

and in which

(120)

 (121)

                                 

 (122)

where:
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(123)

                                               

 
This approach can be applied even when the truss element nodes fall inside the plane
element. For instance considering the truss element with nodes i and j within the triangular
3-noded element like in the Figure 31.
 

Figure 31.
 

The displacements of the element nodes can be obtained throughout shape functions of the
“parent element” as:

  

(124)

                               

where , k=1,2,3 represents the shape functions for the triangular element computed for
each node coordinates of the truss element. Hence the stiffness matrix and nodal force vector
are obtained in this case:
 

(125)

                                               

 
Where the transformation matrix in this case is:
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 (126)

 
                        

 Similar transformation matrices can be obtained when quadrilateral or higher order plane
elements are used. The shape functions are computed in truss element nodes with known
coordinates. Usually these coordinates are given in the global coordinates whereas the
shape functions of the plane elements are given in the natural coordinate systems. Therefore
some transformations are also necessary to obtain the coordinates of the truss element nodes
in the natural coordinates. These transformations are based on the isotropic character of the
plane element used. For triangular elements the global coordinates (x, y) and the natural
coordinates (x, h). are relationed as:

(127)

                                                                                                          
in which  xi, yi (i=1,2,3) represents the coordinates of the triangular element nodes and the

shape functions Ni have the following expressions represented in the natural coordinate

system as:

(128)

                                    
For the known x, y coordinates we can obtain the corresponding natural coordinates by
solving the following system of equations:
 

(129)

                                            
Similarly we can obtain the natural coordinates in the case when the plane element is
quadrilateral.
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6.3.3 Bolts elements

 
The bolts pass through the elements in the mesh, and are modelled by one or a series of truss
elements. Two different bolt models are available: end anchored and fully bonded.

6.3.3.1 End anchored bolts

 
The end-anchored bolt is represented by a truss deformable element (Figure 32). This
element behaves as a single element and the interaction with the finite element mesh is
through the endpoints only. These nodes can be assigned anywhere in the structural mesh, the
nodes are mapped in the finite element mesh elements. The stiffness matrix of the anchor is
added to the global stiffness matrix of the structure in this way.
The d.o.f displacements of the anchored element are computed in functions of the plane
element nodal displacements in which the ended anchor nodes fall:

(
130)

 
or in the condensed form:

(131)
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Fig. 32. Bolt element
      

Figure 33.  End anchored bolts.
  
 
Then the anchor stiffness matrix and nodal forces vector are computed as:
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 (132)

                                        
After this transformations the nodal force vector and stiffness matrix can be dirrectly added
to the corresponding arrays of the „parent” plane elements or assembled into the structure.
The nodes i and j of the truss element and their d.o.f. are not explicitly present, we can say
that d.o.f. of the bar element are constrained to follow d.o.f. of the „parent” plane elements.
Other situations, associted with higher order or quadrilateral elements are taken into account
in the same way.
The axial force F in the anchor is calculated from the stiffness-displacement relation
expressed in the local element system as:

(133)

                                           
 
in which the displacements at nodes i and j are computed in function of the nodal
displacements of the parent plane elements throughout the shape functions. For instance,
considering the 3-noded triangular element (Fig. 33) the displacements at each node, in the
global coordinate system are expressed as:

 

(134)

                             

where  represents the shape functions computed for each plane element in the points
associated with end anchored element. These displacements are transformed in the local
coordinate system via transformation matrix (131) as:

 (135)

 
                                           

Finally, with the local axial displacements computed using the above equation, the axial
force along the anchor element is computed using the equation (133).
 
In the program have been implemented fully linear and elasto-plastic anchors. In the first
case the anchor have an elastic behaviour, the failure do not occur. In the second case,
failure of an anchor element occurs due to tensile yielding of the bolt material. The failure is
controlled by the tensile yield strength Fy (Figure 34). When the axial force in the element
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reach the yield strength, that element is considered failed and no residual resistance is
assumed to carryout further.
 

Fig. 34. Failure criteria.
 

 

6.3.3.2 Fully bonded bolts

 
Fully bonded bolts are divided into “bolt elements” according to where the bolts cross the
finite element mesh. It is assumed a “perfect bond” between the truss element (bolt) and
crossed plane elements. These bolt elements act independently of each other. Neighbouring
fully bonded bolt elements do not influence each other directly, but only indirectly through
their effect on the plane elements (Fig. 35).
 

Figure 35.  Fully bonded bolts.
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The bolt stiffness matrix and nodal force vector are determined as in section 4.3.2, in
function of the transformation matrix that depends of the shape functions of the crossed plane
element.
The axial force along the bolt is determined from the relative axial displacements of the bolt
element.

 (136)

                                          
where uj and ui represents the axial local displacements at ended nodes determined as in

section 4.3.2.
When a plastic behaviour is selected for the fully bonded bolts, the failure of the bolt is

assumed to occur if the axial force  exceeds the yield strength of the bolt material. No
residual force is allowed in this case (Fig. 34).

6.3.3.3 Liner elements

 
The liner elements are composed of beam-column elements with three degrees of freedom
per node: two translational degrees of freedom (u, v) and one rotational degree of freedom
(rotation in the x-y plane θ) in each node. The liners are based on Bernoulli or Timoshenko
beam theory, deflections are due to shearing as well as bending. Bending moments, shear
forces and axial forces in the elements are evaluated in function of the nodal displacements
and rotations determined at the ended nodes assigned in the finite plane element nodes
(mesh). The liners nodes coincide with the nodes of the general structural mesh. In this way
between the translations of the liner elements and the displacements in the finite element
mesh exist a perfect compatibility. Translational d.o.f are shared by plane elements and
beam elements at nodes. Rotational d.o.f. at these nodes are associated with only the beam
elements (liners).
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Fig.36. Liner elements

 

6.3.3.4 Geogrid elements

 
Geogrids are slender structures with normal stiffness but with no bending stiffness (truss
elements) used to model soil reinforcements. Geogrids are composed of truss elements with
two translational degrees of freedom in each node (u, v). These translational d.o.f. are
shared by plane elements and truss elements at nodes. The axial forces in the geogrids are
determined in function of the relative axial displacements at the nodes. The formulation of
the geogrid element is similar with fully bonded bolt, but because the plane element nodes
and geogrid nodes coincide it is not necessary to to make constraint transformations like in
the case of bolt elements. The elements may have a plastic behaviour and in this case an
element is say to be yielded when the axial force over passed the axial yield strength of the
element.
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Fig.37. Geogrid elements (Geotextile).
 

 
 
 

7 Nonlinear analysis formulation

7.1 Inelastic stress-strain behavior

 
A material is called nonlinear if a strain-dependent matrix rather than a matrix of
constants relate stresses and strains. Plastic flow is a cause of material non-
linearity. During plastic straining, the material may flow in an "associated"
manner, that the vector of plastic strain increment may be normal to the yield or
failure surface. Alternatively, normality may not exist and the flow may be "non-
associated".  For frictional materials, whose ultimate state is described by the
Mohr-Coulomb criterion, non-associated flow rules may be preferred in which
plastic straining is described by a plastic potential potential function.
In order to formulate a theoretical description, three requirements have to be
addressed, yield criterion, flow rule and hardening rule.
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7.1.1 Yield criterion

 
Yield criterion or yield function, defines the state of stresses at which material
response changes from elastic to plastic. We define a yield function F, which is a
function of stresses s  and quantities a and Wp which control the hardening (i.e.

how a given yield surface in space is modified due to a plastic strain response:

 (137)

                                                            
If we evaluate F the possible results are:

  
 

Fig. 38. Yield surface.
 

7.1.2 Flow rule

Flow rule relates plastic strain increments to stress increments after onset of initial
yielding. We define a plastic potential Q, which has units of stress and is a

function of stresses, . The plastic strain increments (flow rule) are
given by:

(138)

                                                             
where dl represents a scalar that may be called a "plastic multiplier". Thus:
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(139)

                                              
This rule is known as the normality principle because the above relations can be
interpreted as requiring the normality of the plastic strain increment vector to the
yield surface in the hyper-space of stress dimensions.
The flow rule is called "associated" if Q=F and "non-associated" otherwise.
Associated flow rules are commonly used for ductile metals, but non-associated
rules are better suited to model soil and granular materials.
 

Fig. 39. (a) Geometrical representation of the plastic strain increment;
(b) normality rule in 2D stress-space.

 

7.1.3 Hardening rule

 
Hardening rule predicts the change in the yield surface due to plastic strains. Two
hardening rules can be formulated:
·        Isotropic hardening: Bauschinger effect is ignored but the elastic range
expands.
·        Kinematic hardening: Bauschniger effect is included but elastic range remains
constant.
 
Isotropic hardening can be represented by the plastic work per unit volume Wp

thus:
 (140)
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Kinematic hardening is given by vector determining the translation of the yield
surface in general stress state.

7.2 Incremental stress-strain relations

We will assume that strain increments include elastic components and plastic
components and they are small. An incremental stress-strain relation, analogous to

the relation of elasticity can be formulated.
 
During an increment of plastic straining dF=0 thus:

 (141)

                                
By substitution:

(14
2)

                       
The resulting equation to solve for the plastic multiplier dl is:

(143)

                                                      
where P

l

 is the row matrix in which both work hardening and strain hardening are

included in this expression:

(14
4)

                       
Rearranging the terms yield:

 (145)
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where I is a unit matrix and Eep is the generalized tangent constitutive matrix. If

Q=F (associated flow rule) this matrix Eep is symmetric. For F<0 (yield has not

occur) or F=0 and dF<0 (unloading from plastic state) then Eep=E.

The tangent stiffness matrix kt is now given by:

(146)

                                         
 

7.3 Failure criteria

Several failure criteria have been incorporated as suitable for representing the strength of
soils as engineering materials.

7.3.1 The Von-Misses criterion

 
This criterion taking into accounts the all three principal shear stress into account. In this
case the yield function is given by:

(147)

                                            

or in terms of the so-called equivalent stress  as

(148)

                                                
where

(149)

  
 
For plane strain applications assuming no plastic volume change:
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(150)

                                                       
whereas under triaxial conditions:

(151)

                                                         
where cu is the undrained "cohesion" or shear strength of the soil. 

 

Fig.40. von Misses criterion in principal stress space
  
 When plotted in three-dimensional principal stress space the yield surface depicts a

cylinder parallel to the hydrostatic axis  as shown in Figure 40.

7.3.2 Mohr-Coulomb and Tresca criterions

 
In principal stress space, this criterion takes the form of an irregular hexagonal
cone. This criterion can be written in principal stresses as:

(152)

                               
where the principal stresses are given by:

 (153)
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and where the "mean" and "deviator" stresses are

 (154)

                                                     
 
The invariants s and t are:

 (155)

(156)
              
 

Substituting for  and  from (59) gives the function:

 (
15
7)

                  

The Tresca criterion is obtained from (63) by putting to give:

 (158)

                                      
 
                                             
 

7.4 Elastic-plastic procedures

  
When the material behavior is nonlinear, material properties in an element are
dictated by material properties at a finite number of sampling points in each
element. Typically these points are quadrature stations of a numerical integration
rule. At each point one must keep a record of strains and update the record in each
computational cycle.
 
The number of points must be small to reduce computational expense. However, to
accurately capture the spread of yielding in individual elements many sampling
points are needed. The choice is between many simple elements and a smaller
number of more sophisticated elements.
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Fig. 41. Nonlinear analysis procedure
  
The implementation of the elasto-plastic constitutive relations in a finite element
context requires the consideration of two diferent levels, the global level and the
material level respectively. On the global level equilibrium must be satisfied as in
any other linear or nonlinear finite element computation, whereas on the material
level the plasticity relations must be satisfied. Performing the finite element
discretization in  the usual way,  one ends up with the following equation system:

   (159)
 
where F represents the applied load vector, U the displacement vector and K the
stiffness matrix. Since the stress-strain relation are non-linear, the constitutive
matrix depends on current state of stress the stiffness matrix is nonlinear. Two
main types of solution procedure can be adopted to model material non-linearity.
With either solution method, the load is incremented in several steps and the
solution is obtained through a series of linearized steps.

7.4.1 Constant-stiffness method

 
The first approach involves "constant stiffness" iterations in which non-linearity is
introduced by iteratively modifying the right hand side "loads" vector. The global
stiffness matrix, usually kept elastic, in such an analysis is formed once only. Each
iteration thus represents an elastic analysis. Convergence is said to occur when
stresses generated by the loads satisfy some stress-strain law or yield or failure
criterion within prescribed tolerances. The loads vector at each iteration consists
of externally applied loads and self-equilibrating "body loads". The body loads
have the effect of redistributing stresses within the system, but they do not alter the
net loading on the system. The method is shown in Figure 42. For load-controlled
problems, many iterations may be required as failure approached, because the
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elastic global stiffness matrix starts to seriously overestimate the actual material
stiffness.

 

Fig. 42. Constant stiffness method.
 
 
The effects of plastic action are regarded as initial stresses that produce fictious
loads, which are combined with the load actually applied. This procedure avoids
the expense of repeatedly forming and factoring a tangent-stiffness matrix, but may
converge slowly if plastic strains are large or widespread.

7.4.1.1 Generation of self-equilibrating body loads

 
During each computational cycle, assuming the material is yielding, the strains will
contain both elastic and plastic components, thus:

 (160)

                                             
Only the elastic strain increments Deegenerate stresses:

(161)
                                                       
These stress increments are added to stresses already existing from the previous
load step and the updated stresses substituted into the failure criterion. If stress
redistribution is necessary, yield criterion is violated (F>0), this is done by
altering the load increment vector Fi in the global system of equations,
corresponding to the load cycle i:

(161)
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where K represents the elastic (initial) global stiffness matrix and Ui represents
the global displacements increments. This vector holds two types of load, as given
by:

(162)

                                                     
where Fa is the actual applied external load increment and Fb

i is the body loads

vector that varies from one iteration to the next and must be self-equilibrating so
that the net loading on the system is not affected by it.

7.4.1.2 Initial strain method

 
In this method the material is allowed to sustain stresses outside the failure
criterion for finite "periods". Instead of plastic strains, we refer to viscoplastic
strains and are generated as a rate that is related to the amount by which yield has
been violated by:

  (163)

                                                   
where F is the yield function and Q is the plastic potential function.
The increment of viscoplastic strain, which is accumulated from one iteration to
the next, is obtained through multiplication the strain rate by a pseudo time step as:

 (164)

                                               
and

(165)

                                   
where the time step for numerical stability depends on the assumed failure
criterion as:

for Von-Misees
materials   

(166)

for Mohr-Coulomb
materials

 (167)
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The derivatives of the plastic potential function Q with respect to stresses are
expressed as:

 (168)

                                 

where  where t represents the second deviatoric stress invariant:

(169)
               
and

 (1
70)

, etc.    

 (171)

(179)

                         
                                                      
where the first invariant (mean stress invariant) s is given by the relation:

 (180)

                                        
It may be noted that in geotechnical applications, plane strain conditions are

enforced and in the above equations .
The viscoplastic strain rate is evaluated numerically by the expression:

(181)

                             
where
 

 (1
82)
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  (183)

                                

(
1
8
4
)

(185)

                 

The self-equilibrating body loads are accumulated at each time step within each
load step by summing the following integrals for all yielded elements (F>0 at
Gauss points):

 (186)

                             
This process is repeated at each time step iteration until no integration point
stresses violate the failure criterion within a given tolerance. The convergence
criterion is based on a dimensionless measure of the amount by which the

displacement increment vector Ui changes from one iteration to other.

 

7.4.1.3 Initial stress method

 
This method involve an explicit relationship between increments of stress and
strains. Thus, elasto-plasticty is described by:

(187)

                                         
where Eep represents the generalized tangent constitutive matrix.
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For perfect plasticity in the absence of hardening or softening the tangent
consitutive matrix can be obtained particularizing the equation 51:

 (188)

                                                   
The body loads Fb

i in the stress redistribution process are reformed at each

iteration by summing the following integral for all elements that posses yielding
Gauss integration points:

(189)

                                        
This method is used in conjunction with the forward Euler approach to integrating
the elasto-plastic rate equation, extrapolating from the point at which the yield
surface is crossed.

 
 

 

7.4.1.4 Solution procedure

Loads Fa on the structure are applied in increments DFa1, DFa2, and so on, so that

. The graphical interpretation of the method for a problem with one
displacement variable is shown in Figure
 
1.      For the first computational cycle (i=1) assume Eep =E for all elements. Apply

the first load increment DF1.

2.      Using the current strains, determine the current Eep or viscoplastic strain

increment  in each element. Obtain the self-equilibration body loads for each

element. Obtain the current structure (global) self-equilibrating body loads  and

solve ,  where Fa is the actual applied external load

increment. From obtain the current strain increment for each element.
3.      If any element makes the elasto to plastic transition revise Eep return to

previous step 2 and repeat the steps 2 and 3 until convergence.
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4.      Update the displacement vector , the strains 

and the stress .
5.      Apply the next load increment and return to step 2.
6.      Stop when sum of incremental loads equals the total load or the structure
collapse.
 
During the iteration process the nodal displacements caused by the actual applied
external load increments and the body loads vector at successive iterations are
compared. The convergence criterion is based on a dimensionless measure of the
amount by which the displacement increment vector changes from one iteration to
other. Convergence is said to have occurred, if the absolute change in all
components of displacement vector, as a fraction of the maximum absolute
component of displacement vector is less than a predefined tolerance.

7.4.2 Tangent (variable)-stiffness method

 
The second approach, shown in Figure 43, takes account of the reduction in
stiffness of the material as failure is approached. If small enough load steps are
taken, the method can become equivalent to a simple Euler "explicit" method. In
this approach the global stiffness matrix may be updated periodically and "residual
body-loads" iterations employed to achieve convergence. In contrasting with
"constant stiffness approach" the extra cost of reforming and re-factorization the
global stiffness matrix in the variable stiffness method is offset by reduced
numbers of iteration, especially as failure is approached.
The algorithm requires that representation of the stress-strain relation must be
stored, so that tensions and elastic constants can be obtained for any given
deformation. We also have to store and update at any sampling point of each
element after each computational cycle, element strains and stresses and the nodal
displacements.
An incremental relationship between displacement and force is needed:

  (190)

                                                  
 where Kt is the tangent stiffness matrix and the above equations represent the

linearized eqauation of the nonlinear equation 191:

 (191)
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Fig. 43. Load step in tangent stiffness method.

The computation proceeds by applying a load increment DF and computing the
corresponding displacement increment from equation (190) (Fig.43).
The strain increment is computed in the usual way as:

(192)
                                                       
Next the stresses are computed via the elasto-plastic constitutive relation:

(193)

                                                                                         
This is a nonlinear relation since the constitutive matrix Eep depends on the current
stress state and generally iterative procedures must thus be used. Assuming that the
stresses have been computed the internal force vector can then be found as:

(194)

                                                             
this must be balanced by the total applied load, therefore the residual force must
vanish:

 (195)
                                                     
If the residual is different from a given tolerance it is applied as an external load
following the well-known Newton-Raphson procedure. This then gives a new
strain increment and a corresponding new stress increment, which must be
determined via the nonlinear elasto-plastic constitutive relation, a new residual is
computed and so on until the residual becomes sufficiently small. The procedure
can be outlined as follows:
 
1.      Apply load increment DF and find displacement and strain increments Du

and De
2.      Determine stress increment Ds  from equation (193)
3.      Compute residual R.

4.      If  set  and goto 1
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Thus, the computation of a load step requires a global iterative procedure where
the out of balance force, or residual, must vanish, as well as a procedure to
compute the stress increments (step 2). The stress update is performed in each
integration points. In order to compute the stress increment given a strain increment
the backward integration scheme is implemented in the code. Essentially the
method consists of an elastic predictor, followed by a plastic corrector to ensure
the final stress is nearly on the yield surface.
 

 

7.4.2.1 Integration of the constitutive relations. Consistent tangent matrix

 
Referring to Figure 44 from a point A lying inside or on the yield surface an elastic
predictor is applied. This leads to a state of stress outside the yield surface,
increments end up at point B. To fulfill the yield condition a plastic corrector is
applied, thus returning the stresses to the yield surface at point C. The plastic
corrector is determined by two quantities, the scalar Dl giving the magnitude, and

the gradient of the loading surface giving the direction. The magnitude Dl
is determined such that the yield condition is fulfilled:

(196)

                                            

where is given by

(197)

                                       
 

Fig. 44. Stress correction.
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A first order Taylor expansion of the yield function at B gives:

(19
8)

                                   

Inserting the expression for into the above relation and enforcing consistency
of the yield function at point C gives a step size of:

(199)

                                                
 
With the backward Euler integration scheme, a consistent tangent modular matrix
can be formed.

(200)
                      
On differentiation we get:

 (201)

 
                                         

where is known as the "consistent tangent matrix and is given by:
 

(202)

                                                 
and

(203)
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7.4.2.2 Solution procedure

Loads F on the structure are applied in increments DF1, DF2, and so on, so that

. The graphical interpretation of the method for a problem with one
displacement variable is shown in Figure 45 where the subscripts i indicating the
load step number have been dropped. Procedural steps are outlined as follows.
 
1.      For the first computational cycle (i=1) assume Eep =E for all elements. Apply

the first load increment DF1.

2.      Using the current strains, determine the current Eep in each element. Obtain the

for each element. Determine the residual force if any. Obtain the current

structure (global) tangent stiffness Kt,i  and solve . From 

obtain the current strain increment for each element.
3.      If any element makes the elasto to plastic transition revise Eep return to

previous step 2 and repeat the steps 2 and 3 until convergence.

4.      Update the displacement vector , the strains 

and the stress .
5.      Apply the next load increment and return to step 2.
6.      Stop when sum of incremental loads equals the total load or the structure
collapse.
 
 

Fig. 45. Solution procedure (a) Full Newton-Raphson procedure (b)
Modified Newton-Raphson procedure.

 
 
Usually the so-called modified Newton-Raphson method is used. The modification
consists of computing the tangent stiffness only once in the beginning of each load
step rather than in each iteration as shown in Figure 45(b). Therefore, in step 2 of
the above algorithm the tangent stiffness matrix is formed and factorized only once
at the beginning of the load increment.
 
During the iteration process the residual forces are computed. Convergence is said
to have occurred, if the absolute change in all components of residual force vector,



GFAS83

© 2024 GeoStru Software

as a fraction of the maximum absolute component of force vector is less than a
predefined tolerance.

8 Steady state analysis

 
The gouverning partial differential equation for a confined aquifier with flow in
the horizontal (x,y) plane is:

(204)

                                 
Where f is the fluid potential or total head measured from the bottom of the
aquifier, kx and ky are the coefficients of the permeability in the x and y directions

and Q is the recharge. Pumping is a negative Q. The finite element discretization
process reduces the differential equation to a set of equilibrium type equations of
the form:

(205)

                                               
 Where kc is the symmetrical conductivity matrix, F  is a vector of nodal potential

(total head) values, and q is a vector of nodal inflows/outflows. The element
matrices are calculated using:

(206)

                              
Assuming that the principal axes of the permeability tensor coincide with x and y,
the property matrix K is:

(207)

                                                 
and the T matrix is similar with the strain-displacement matrix B in the stress
analysis. For instance for 4 noded quadrilateral element the matrix T is given by:

 (208)
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9 Initial conditions

Once the staged construction and mesh have been generated, the finite element
model is complete. The initial conditions consists in the initial groundwater
conditions, the initial geometry configuration and the initial effective stress state.

 

9.1 Initial groundwater conditions

 
Pore pressures and external water pressures can be generated on the basis of
phreatic levels (water table). A phreatic level represents a series of points where
the water pressure is zero. Using the input of phreatic level, the water pressure
will increase linearly with the depth according to the specified water weight, the
pressure variation is assumed to be hydrostatic. The external loading due to the
reservoir is modelled by applying a normal stress to the face of the slope equal to
the water pressure. Thus as shown in the Figure 47 the applied stress increases
linearly with water depth and remains constant along the horizontal foundation
level. These stresses are then converted into equivalent nodal loads on the finite
element  mesh.
Phreatic levels are defined by two or more points and do not interact with the
geometrical model. Above the phreatic level the pore pressures will be zero,
whereas below the phreatic level there will be a hydrostic pore pressure
distribution at each Gauss integration points.
Steady state pore pressures and external water pressures are generated in the
water conditions mode. Water pore pressures can be generated on the basis of
phreatic levels or alternatively, water pressures may be generated by means of a
steady-state groundwater flow. The initial groundwater conditions can be
generated in two different modes: the first consists in the definition of the phreatic
levels and generation the water pore pressures amd second through an explicit
steady state flow analysis, that require a definition of the total heads on the finite
element mesh boundaries.
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Fig.46.  Free surface modelling.
 

Fig.47. Reservoir loading.

Fig. 48. Pore pressure distribution. 
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Fig.49.  Hydraulic boundary conditions.

Fig.50.  Steady state flow analysis. Total heads distribution.

Fig.51.  Steady state flow analysis. Pore pressure distribution.

9.2 Initial geostatic stresses

 
The initial stress conditions can be generated also in two different modes: the first
consists in an explicit finite element stress analysis taking into account the
gravitational loads of the massive and second through the simplified K0
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procedure. The K0 procedure may only be used for horizontally layered

geometries with horizontal ground surface and, if applicable, a horizontal phreatic
level.
In the case of linear elasticity we have the following relationship between normal
stresses:

(209)

                                                   
where sx and sy represents the lateral and vertical normal stresses, respectively

and n is the Poisson ratio. This equation can be rewritten as:

 (210)

                                                    
 where K0 represents the coefficient of lateral earth pressure at rest. The thirs

principal stress follows  from the geometrical symmetry as:

(211)

                                             
and the shear stresses are zero. The K0 variable in general ranging from 0 to 1.

GFAS offers possibility for selection of arbitrary values for this coefficient wen
generating an initial geostatic stress state prior to any construction stage.
In contrast to the simplified K0 procedure, the calculation of initial stresses by

means of explicit finite element stress analysis based on gravity loading can be
conducted on any shape geometry and determine the initial stresses in the massive
using ether a linear anslysis or elasto-plastic analysis. This analysis is performed
in the first stage of construction prior to any staged constructions or loads.
However when choose this option to generate the initial stresses results
displacements, these displacements are not realistic because the soil is modelled
as it appears in reality and the calculation of the initial stress should not influence
the displacements computed later in the next stages of the analysis. These
unrealistic displacements can be reset to zero at the start of the next calculation
stage.
 

10 Dynamic and seismic analysis

 
Equations that govern the dynamic response of massive will be derived by
requiring the work of external forces to be absorbed by the work of internal,
inertial and viscous forces for any small kinematically admissible motion. For a
single element we can write:

(212)
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where:
- small arbitrary dislacements
small arbitrary strains vector

F- body forces vector
F  - prescribed surface tractions
pi concentrated loads vector

- the displacement of the point at which load pi is applied.

r - mass density of the material
kd material damping parameter

Denoting with N the shape functions of the finite elements, we have for the
displacement field u and its two first time derivatives (velocities and acceleration
fields):

(213)

                                                             
Where the vector d contains the displacements at nodes of the finite element that
are functions of time only.
Combining the equations (212) and (213) and since the displacements are
arbitrary we obtain the following coupled, second-order, ordinary differential
equations in time:

 (214)

                                                
 where the element mass and damping matrices are defined as:

  (215)

                                                                                                      
and the element internal force and external load vectors are defined as:

(216)

                         
An undamped structure, with no external loads applied to unrestrained d.o.f.,
undergoes harmonic motion in which each d.o.f. moves in phase with all other
d.o.f. This way:

(217)

                                          
Combining Eq.(214) and Eq.(217) and setting C=0 and Rext=0 we obtain:
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(218)

                                  
Which represents the basic statement of the vibration problems and where K
represents the stiffness matrix of the structure and M the global mass matrix that
may be „lumped” or „consistent”.
The consistent element mass matrix is defined by the following relation:

(219)

                                
Where N represents the shape functions matrix. The lumped mass matrix is

obtained by placing particle masses mi at nodesi of an element such that is

the total element mass. A lumped mass matrix is diagonal but a consistent mass
matrix is not. For a 4 noded quadrilateral, for example, the lumped mass matrix is
given by:

(220)

                                          
where A is the element area and I the unit matrix.

 

11 Staged constructions

GFAS allows to construct complex geometries and analysis can be runned in
different stages associated to different phases of construction. In fact the entire
analysis procedure is developed under this phylosphy allowing the users to create
multiple staged constructions in the model. In this way complex analyses such as:
excavations, embankments or constructions can be conducted. Moreover during
these phases the user has the possibility to change the water pressure, boundary
conditions activate or deactivate several regions from the massive, anchors, liners,
geogrids or to improve the accuracy of the previous computational results. Staged
construction enables the activation or deactivation of weight (gravitational loads)
and selected components of the model such as anchors, liners, geogrids, loads, etc.
During the Staged construction analysis, the loads are increased from 0 to 1. As
soon as the load parameter reaches the value of 1.0, the constructions stage is
completed and the analysis of the current phase is completed, and go the the next
phase of the construction. If a staged construction calculations finishes while the
load factor is smaller than 1.0, the program will stop the analysis. The most likely
reason for not finishing a construction stage is that a failure mechanism has
occurred.
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12 Analysis types

12.1 Slope stability analysis

 
The method, based on finite element formulation as described earlier, can be
applied with complex slope configurations in two dimensions to model virtually
all types of mechanisms. General soil material models that include Mohr-Coulomb
and others can be employed. The equilibrium stress, strains, and the associated
shear strengths in the soil mass can be computed very accurately.
During the analysis the program gradually reduces the basic strength
characteristics of the soil mass until failure occurs. The factor of safety (FS) is to
be assessed, and this quantity is defined as the proportion by which tan F
 (friction angle) and c (cohesion) must be reduced in order to cause failure with
the gravity loading kept constant. This is in contrast to the bearing capacity
analysis in which failure is induced by increasing the loads with the material
properties remaining constant.

12.1.1 Factor of Safety (FOS) and Strength reduction factor (SRF)

 
Gravity loads are generated automatically in manner described in section 3.8 of
the present documentation.  This load is applied to the slope in a single increment.
A trial strength reduction factor loops gradually weakness the soil parameters until
the algorithm fails to converge. The factored soil strength parameters that go into
the elasto-plastic analysis are obtained from:

 (221) 

                                                                 
where SRF is strength reduction factor. Several increasing values of the SRF
factor are attempted until the algorithm fails to converge, at which point SRF is
then interpreted as the factor of safety FOS. This actually means that no stress
distribution can be achieved to satisfy the failure criterion and global equilibrium.
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12.1.2 Material properties

The Mohr-Coulomb constitutive model is used to describe the soil material
behavior. The Mohr-Coulomb criterion relates the shear strength of the material to
the cohesion, normal stress and angle of internal friction of the material. The
failure surface of the material has been already presented and is given by the
equation (63). For Mohr-Coulomb material model, six material properties are
required. These properties are:
 
·        The friction angle f
·        Cohesion C
·        Dilation angle y
·        Young's modulus E
·        Poisson's ratio n
·        Unit weight of soil g
 
Young's modulus and Poisson's ratio have a important influence on the computed
deformations prior to slope failure, but they have little influence on the predicted
factor of safety in slope stability analysis. Dilation angle y  affects directly the
volume change during soil yielding. If y=f the plasticity flow rule is known as
"associated", and if y¹f non-associated plastic flow rule is assumed. The change
in the volume during the failure is taken into account through the coefficient y .

12.1.3 Slope collapse

Non-convergence within a user-specified number of iterations in finite element
program is taken as a suitable indicator of slope failure and is joined by an
increase in the displacements. Usually the value of the maximum nodal
displacement just after slope failure has a big jump compared to the one before
failure.
 

12.1.4 Computational example

The problem to be analyzed is a slope of Mohr-Coulomb material subjected to
gravity loading. The factor of safety (FOS) of the slope is to be assessed, and this
quantity is defined as the proportion by which friction angle and cohesion must be
reduced in order to cause failure with the gravity loading held constant. Figure 52
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shows the data for an analysis of a homogenous slope with the following material
properties given in Table 5. The change in the volume during the failure is not
considered in this study and therefore the dilation angle y  is taken as zero.

Fig. 52. Mesh and data for slope-stability example.
 

   Table 5. Material properties
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Gravity load is applied to the model and the strength reduction factor (SRF)
gradually increased affecting the equation (104) until convergence could not be
achieved.
 
The output in Table 6 gives the strength reduction factors and the associated
maximum nodal displacement at convergence, and the number of iterations to
achieve convergence.
 

 Table 6. Summarized results of slope stability analysis.
SRF Number of

iterations
Maximum
displaceme

nt [cm]

Convergen
ce

1 10 1.710982 OK
1.1 13 1.789119 OK
1.2 17 1.889358 OK
1.3 22 1.996587 OK
1.4 35 2.116528 OK
1.5 82 2.29019 OK
1.6 600 4.118373 FAILED
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It can be seen that when SRF factor is equal with 1.6 the iteration ceiling of 600
was reached. Figure 53 shows a plot of these results and it can be seen that the
displacements increase rapidly at this level of strength reduction, indicating a
factor of safety of about 1.6. Bishop and Morgenstern charts give a factor of safety
of 1.593 for the slope under consideration. Figure 54 shows the deformed mesh
and displacement vectors corresponding to slope failure; the mechanism of failure
is clearly shown to be of the "toe" type.
 
 

Fig. 53. Maximum displacement versus Strength Reduction Factor.
 

Fig. 54. Deformed mesh and displacement vectors at failure.
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Fig. 55. Maximum Shear Stresses and Von-Misses Stresses.

12.2 Bearing capacity analysis

 
Plane strain conditions are enforced and in order to monitor the elasto-plastic
behavior, the loads are increased incrementally until the collapse occur. The
method uses constant stiffness iterations, thus the relatively time consuming
stiffness matrix factorization process is called just once, while the backward
substitution phase is called at each iteration. Several failure criteria have been
implemented for representing the strength of soils as engineering materials. For
soils with both frictional and cohesive components of shear strength Mohr-
Coulomb failure criteria is appropriate. For undrained clays, which behave in a
"frictionless" manner, Von-Misses failure criteria may be used.
 
The example shown in Figure 56 is of a flexible strip footing at the surface of a
layer of uniform undrained clay. The footing supports a uniform stress q, which is
increased incrementally to failure. The elasto-plastic soil is described by the Von-
Misses failure criteria and is described by three parameters, namely the undrained
"cohesion" cu, followed by the elastic properties E and n. The loads in this case

are the nodal forces which would deliver a uniform stress of 1kN/m2 (q=1kN/m2)
across the footing semi-width of 2 m..
 
 

Fig.56. Mesh and data for bearing capacity example.
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Fig.57. Nodal forces
 
 

 Table 7. Material properties
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       Table 8. Summarized results of bearing capacity analysis.
Applied

load
factor

Number of
iterations

Convergenc
e

0.2 2 OK
0.8 2 OK
1.0 2 OK
2.0 2 OK
2.8 17 OK
3.0 26 OK
3.6 41 OK
4.0 50 OK
4.4 66 OK
5.0 123 OK
5.2 300 FAILED

 
Figure 58 show the deformed mesh and displacement vector corresponding to

unconverged solution at collapse.
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Fig. 58. Deformed mesh and displacement vectors at failure.
 
  
These loads are "factorized" by the increasing load factors from 0.1 till ultimate
load factor corresponding to collapse. At load levels below failure convergence
should occur in relatively few iterations. As failure is approached the algorithm
has to work harder and requires more iterations to convergence. The output in
Table 8 gives the applied load factors and the associated and the number of
iterations to achieve convergence.
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Fig.59. Maximum Shear Stresses and Sigma-X Stresses at failure.
 

 .
 

12.3 Staged construction analysis

 
GFAS allows to construct complex geometries and analysis can be runned in
different stages associated to different phases of construction. During the Staged
construction analysis, the loads are increased from 0 to 1. As soon as the load
parameter reaches the value of 1.0, the constructions stage is completed and the
analysis of the current phase is completed, and go the the next phase of the
construction. If a staged construction calculations finishes while the load factor is
smaller than 1.0, the program will stop the analysis. The most likely reason for not
finishing a construction stage is that a failure mechanism has occurred.
 

 Table 9. Staged construction. Geometry and stages.
Stage 1 Stage 2

Stage 3 Stage 4

 Table 10. Staged construction. Results: Shear stresses 
Stage 2 Stage 3
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Stage 4-Collapse

The computational example presented here describe an open excavation
constructed in four stages. During the excavation process the soil is reinforced
with walls and anchors as can be seen in table 9. The soil is modeled using the
Mohr-Coulomb failure criteria and the elasto-plastic behavior is assumed for
anchors. Only the gravitational loads and the excavation loads are taken into
account during the construction process. Table 10 shows the distribution of the
shear stresses for the stages 2 to 4 whereas in table 11 are depicted for each stage
the variation of the bending moments in the walls. The collapse of the construction
occurs at stage 4 as it can be seen on the Load-displacement graph depicted in Fig.
60. The deformation configuration at collapse of the construction is depicted in
Fig. 61. At this stage also the anchors failed as it can be seen in Table 12.
 

 Table 11. Bending moments
Stage 2 Stage 3

Stage 4
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Table 12. Anchors yielded

Stage 3 –Partial yielding Stage 4- Fully Yielded

 
 

Fig. 60
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Fig.61.  Deformed configuration at collapse.

 

13 Tutorial & DXF

A method for generating the calculation grid using the unstructured grid approach
is presented.
For simplicity of exposition, reference will be made to the figure below, which
represents the volume of land to be modelled with GFAS.
The proposed method is structured in the following steps:
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1. Construction of the calculation grid in Autocad.
2. Creation of a file (*.txt) to be imported into GFAS.

The first point specified reproduces the volume of terrain that needs to be
simulated with GFAS by creating the ‘calculation grid’, i.e. sequences of nodes
that define closed lines (regions).
For regions it is necessary that:
· are defined by closed polylines,
· the nodes of the grid coincide with the points of the polylines.

The sequence of nodes must be assigned according to the following conventions:
· from bottom to top;
· tracing the generic closed polyline in a counter-clockwise direction.

The choice of the position of the reference system is arbitrary.
In the example, it was preferred to model the calculation grid, see figure below,
with 11 differently coloured regions in order to make them recognisable. The
nodes were marked with grey dots, the reference system was set with the origin
coinciding with the position of node 1 of region 1. 
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The second step takes the form of the generation of a file (*.txt) containing the
structure of each region: identification number, number of nodes in the sequence of
which it is defined, and coordinates of each node in the region with respect to the
reference system.

In this specific case, the structure of the text file (*.txt) is as follows:

‘GFAS FILE‘,’‘,’’ (This is a generally valid string, every *.txt file carries this
character sequence)

‘LAYER‘, “1”,9,’’ (Indicates that region 1 is defined by 9 nodes)

‘VERTEX’, “1”,0.00,0.00 (from this point onwards the coordinates of the vertices
are given)

‘VERTEX‘,’9’,0.00,15.0875

‘LAYER‘, “2”,17,’’ (designates that region 2 is defined by 17 nodes)

‘VERTEX‘,’1’,0.00,31.4399

‘VERTEX‘,’17’,0.00,35.567

‘LAYER‘, “3”,24,’’ (specifies that region 3 is defined by 24 nodes)

‘VERTEX‘,’1’,38.8787,6.7509

‘VERTEX‘,’24’,38.8787,7.7509

‘LAYER‘, “11”,4,’’ (denotes that region 11 is defined by 4 nodes)

‘VERTEX‘,’1’,43.0947,33.5566

‘VERTEX‘,’4’,43.0947,36.9911
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The figure shows the Autocad working environment and highlights the point where
the coordinates of the points of the polylines to be entered in the text file.

In GFAS, from the ‘Unstructured Mesh Generation’ environment by clicking on the
‘Import’ command, it is possible to open the file (*.txt) created according to the
above instructions. The result of the problem analysed is shown below: at this
point it is necessary to assign the curve type ‘interface or hole’ (if there are gaps,
assign hole). The procedure is concluded by selecting the commands, Apply and
Generate, in succession with the click of the mouse, from which the calculation
mesh will be generated.
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15 Recommended books

Geotechnical, engineering, and geology books
 

Portal books: explore the library

 
 

• Methods for estimating the geotechnical properties of the soil
 
Methods for estimating the geotechnical properties of the soil: semi-empirical

correlations of geotechnical parameters based on in-situ soil tests.

This text is designed for all professionals who operate in the geotechnical

subsurface investigation. The purpose of this text is to provide an easy

reference tool relatively to the means available today.

Theoretical insights have been avoided, for which please refer to the

bibliography attached, except in cases where these were considered essential

for the understanding of the formulation. The reason for this is obvious: make

the text as easy to read as possible.

After a brief introduction about volumetric and density relationships with the

most common definitions used for soils, in the following chapters we briefly

described some of the most widespread in situ geotechnical testing and

correlations to derive empirically geotechnical parameters and a number of

useful formulations available today in the field of Geology.

The text concludes with the inclusion of formulas used in Technical Geology,

considered of daily use to those working in the sector.

https://www.geostru.eu/it/libri-per-ingegneria-geotecnica-e-geologia/
https://www.geostru.eu/it/shop/book/soil-geotechnical-properties-estimation-methods/


GFAS105

© 2024 GeoStru Software

The topics are intended to provide a basic understanding of the in situ

geotechnical testing and evaluation of geotechnical parameters necessary to

define the geotechnical model.

• Geotechnical and F.E.M. Analysis System (GFAS)

Analisi ad Elementi Finiti in Geotecnica ha lo scopo di introdurre gli utenti al

corretto e consapevole uso delle tecniche FEM: nel volume, pertanto, si è

cercato di coniugare le nozioni teoriche con gli aspetti pratici con cui

quotidianamente un professionista si trova a doversi confrontare.

• Guida alla progettazione delle opere di sostegno in terra rinforzata 

Opere di sostegno in terra rinforzata: Le opere in terra rinforzata e le loro

applicazioni rappresentano attualmente una grande risorsa nell’ambito della

progettazione e, più in generale, dell’ingegneria geotecnica, naturalistica ed

ambientale. Le strutture in terra rinforzata, che combinano le proprietà e le

caratteristiche del terreno e del rinforzo, trovano applicazione in una ormai

ampia gamma di settori, come opere di sostegno, opere di contenimento, opere

in rilevato e opere accessorie di arredo urbano. Pertanto, il manuale ‘Guida

alla progettazione delle Opere di Sostegno in Terra Rinforzata’ si pone come

obbiettivo quello di guidare il progettista nella fase della progettazione e di

verifica, tramite cenni teorici, riferimenti normativi ed esempi pratici.

• Guida alle analisi di stabilità dei pendii ed alle tecniche di stabilizzazione 

Analisi di stabilità dei Pendii e Tecniche di Stabilizzazione: Lo scopo del

presente testo non è quello di essere un saggio sui metodi per l’analisi di

stabilità dei pendii, né, d’altra parte, un mero “manuale d’uso” per l’utente di

un software. Vuole piuttosto essere, come il titolo stesso suggerisce, una sorta

di “guida” per il Progettista che, talora, si ritrova di fronte a scelte (circa i

modelli, i metodi di analisi, i parametri da utilizzare, ecc.) spesso di non facile

interpretazione, stante l’incertezza che, nella maggior parte dei casi,

accompagna la definizione del problema dell’analisi di stabilità di un pendio.

• Portanze cedimenti e consolidazione di fondazioni superficiali 

Portanza e Cedimenti delle Fondazioni nasce dall’esperienza decennale

maturata in ambito geotecnico sia in Italia che all’estero nel settore tecnico ed

informatico. Per potenziare la fruibilità del testo viene trattato con dettaglio il

https://www.geostru.eu/it/shop/book/analisi-ad-elementi-finiti-geotecnica/
https://www.geostru.eu/it/shop/book/opere-di-sostegno-terra-rinforzata/
https://www.geostru.eu/it/shop/book/guida-alle-analisi-di-stabilita-dei-pendii-ed-alle-tecniche-di-stabilizzazione/
https://www.geostru.eu/it/shop/book/portanza-cedimenti-consolidazione-fondazioni/
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quadro normativo italiano ed europeo in cui s’inquadra la progettazione delle

fondazioni, dedicando particolare attenzione alle prescrizioni in zona sismica.

Sono esposte tecniche e teorie di calcolo con esempi applicati a casi studio

mirati a:

– determinazione del carico limite secondo le NTC o Eurocodice,

– interferenza delle fondazioni,

– rotazione e cedimenti differenziali,

– consolidamento con tecniche di rinforzo e micropali.

  

 

16 Geoapp

Geoapp: the largest web suite for online calculations
 

The applications present in Geostru Geoapp were created to support the worker for the

solution of multiple professional cases.

Geoapp includes over 40 applications for: Engineering, Geology, Geophysics, Hydrology and

Hydraulics.

 

Most of the applications are free, others require a monthly or annual subscription.

 

Having a subscription means:

 

https://geoapp.geostru.eu/?lang=en
https://geoapp.geostru.eu/apps/?lang=en
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• access to the apps from everywhere and every device;

• saving files in cloud and locally;

• reopening files for further elaborations;

• generating prints and graphics;

• notifications about new apps and their inclusion in your subscription;

• access to the newest versions and features;

• support service throught Tickets. Enter topic text here.

16.1 Geoapp Section

General and Engineering, Geotechnics and Geology  

Among the applications present, a wide range can be used for GFAS. For this purpose, the

following applications are recommended:  

 

Ø  Sismogenetic zone

Ø  Slope stability

Ø  Landslide trigger

Ø  Critical heigh (maximum depth that can be excavated without failure)

Ø  Bearing capacity

Ø  Lithostatic tensions

Ø  Foundation piles, horizontal reaction coefficient

17 Contact

www.geostru.eu

https://geoapp.geostru.eu/app/zone-sismogenetiche/
https://geoapp.geostru.eu/app/stabilita-del-terreno-pendio-indefinito-con-rinforzo-zornberg/
https://geoapp.geostru.eu/app/precipitazione-innesco-frana/
https://geoapp.geostru.eu/app/altezza-critica-scavo/
https://geoapp.geostru.eu/app/carico-limite-e-cedimenti/
https://geoapp.geostru.eu/app/tensioni-geostatiche/
https://geoapp.geostru.eu/app/kh/
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