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1 RockLab

1.1 Hoek-Brown failure criterion

Hoek-Brown failure criterion

Hoek and Brown have introduced their failure criterion in an attempt to

provide analysis data for the design of underground excavations in hard

rock. The criterion was derived from the results of Hoek's research (1968)

on the brittle fracture of intact rock and Brown's studies (1970) on the

model of the jointed rock mass behavior. 

The criterion started from the properties of the intact rock and introduced

factors to reduce these properties based on the characteristics of joints in

a rock mass. The authors have tried to link the empirical criterion to

geological observations by means of one of the rock mass classification

schemes available and, to this end, they chose the classification proposed

by Bieniawski (1976).

Due to the lack of suitable alternatives, the criterion was soon adopted by

the community of rock mechanics and its use quickly spread beyond the

original limits used in deriving the relations for strength reduction. 

As a result, it has become necessary to review these reports and from

time to time introduce new elements because of the wide range of

practical problems in which the criterion has been applied. Typical of

these improvements have been the introduction of the concept of Hoek

and Brown (1997) "undisturbed" and "disturbed" rock masses, and the

introduction of a modified criterion to impose to zero the tensile strength

of the rock mass for the masses of very poor quality (Hoek, Wood and

Shah, 1992).

One of the first difficulties arose from the fact that many geotechnical

problems, in particular problems of slope stability are more conveniently

discussed in terms of shear and normal stresses rather than with the

relationships of the mains stress of the original Hoek-Brown criterion,

defined by the equation:
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https://scholar.google.com/scholar_lookup?title=Underground%20excavations%20in%20rock&author=E.%20Hoek&author=ET.%20Brown&publication_year=1980
https://pdfs.semanticscholar.org/8e10/352220b4312fd3a077fed495344c9d74bde6.pdf
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where '1 e 
'3

are respectively the major and minor effective stress at

main failure ci

is the uniaxial compressive strength of the intact rock

material  and m and s are material constants, where s = 1 for intact rock.

An exact relationship between equation 1 and the normal and tangential

failure stresses was obtained Hoek and Bray (1981) and later by Ucar

(1986) and Londe (1988).

Hoek has discussed the derivation of equivalent friction angles and

cohesive forces for a variety of practical situations. These derivations

were based on the tangent to the Mohr envelope obtained by Bray

(1981). Hoek suggested that the cohesive strength determined by

inserting a tangent to Mohr's curvilinear envelope is an upper limit value

and can give optimistic results in the stability calculations. Consequently,

an average value, determined by the insertion of a linear relationship

Mohr-Coulomb with the method of least squares, may be more

appropriate. In this work Hoek has also introduced the concept of Hoek-

Brown Generalized Criterion in which the shape of the plane of the main

stress or Mohr's envelope could be changed by means of a variable

coefficient a instead of the term of the square root in equation 1.

Hoek and Brown have tried to consolidate all previous improvements in a

full presentation of the failure criterion and have made a number of

concrete examples to illustrate its practical application.

In addition to changes in the equations, it was also recognized that the

classification of the rock mass of Bieniawski was no longer adequate as a

vehicle for the relationship between the failure criterion and the

geological observations in the field, particularly for very weak rock

masses. This led to the introduction of the GSI index fo Hoek, Wood and

Shah (1992), Hoek (1994) and Hoek, Kaiser and Bawden (1995). This index

was subsequently extended for weak rock masses in a series of articles by

Hoek, Marinos and Benissi (1998) and Marinos and Marinos and Hoek.

The Generalized Criterion of Hoek-Brown

Is expressed as
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https://fdocuments.in/document/1992-a-modified-hoek-brown-failure-criterion-for-jointed-rock-massespdf.html
https://fdocuments.in/document/1992-a-modified-hoek-brown-failure-criterion-for-jointed-rock-massespdf.html
https://www.researchgate.net/publication/37408005_Support_of_Underground_Excavation_in_Hard_Rock
https://www.researchgate.net/publication/225675376_Applicability_of_the_Geological_Strength_Index_GSI_Classification_for_very_weak_and_sheared_rock_masses_The_case_of_the_Athens_Schist_Formation
https://www.researchgate.net/publication/266496092_The_Geological_Strength_Index_GSI_A_characterization_tool_for_assessing_engineering_properties_of_rock_masses
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where mb is a reduced value of the material constant mi and is given by 
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s and a are constants for the rock mass:
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D is a factor that depends on the disturbance degree to which the rock

mass is subjected by blast damage and stress relaxation. It varies from 0

for undisturbed in situ rock masses to 1 for very disturbed rock masses

(see Guidelines for the estimation of the disturbance D).

The uniaxial compressive strength is obtained by setting in equation [2]

 
0'3 

 

providing

               
a
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                                          [6]

and the tensile strength is given by:

              b
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The equation [7] was obtained imposing

 t  '' 31

in the equation [2]. This represents a condition of the biaxial stress. Hoek

has shown that, for brittle materials, the uniaxial tensile strength is equal

to the biaxial tensile strength.

Note that the 'transition' to GSI = 25 for the coefficients s and a was

eliminated in equations 4 and 5 which give continuous uniform transitions

throughout the entire range of GSI values. The numerical values ??of a and

s, given by these equations, are very similar to those given by the previous

equations.
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The normal and shear stresses are related to the principal stresses

through the equations published by Balmer.
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Deformation modulus

The deformation modulus of the rock mass is given by:
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The equation 11a is valid for

 
MPaci 100

For 

MPaci 100

is used the equation 11b.
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Note that the original equation proposed by Hoek and Brown has been

changed, with the inclusion of the factor D, to allow the effects of the

explosion damage and the stress relaxation.
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1.2 Mohr-Coulomb criterion

Since most of the geotechnical software is still written in terms of Mohr-

Coulomb failure criterion, it is necessary to determine equivalent friction

angles and cohesive forces for each rock mass and stress range. This is

done by inserting a linear average relationship to the generated curve,

solving equation [2] for a range of values ??of the minor principal stress

defined by

 max33 ' t

as illustrated in figure 1. 

The adaptation process involves balancing the areas above and below

the plane of Mohr-Coulomb. This implies the following equations for the

angle of friction '  and the cohesive force 'c :
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where

 cin  /' max33 

Note that the value of max3'

, the upper limit of the confinement stress

on which the relationship between the criterion of Hoek-Brown and the

Mohr-Coulomb one is considered, must be determined for each

individual case.

The Mohr-Coulomb tangential force  , for a given normal stress  , is

obtained by substituting these values ??of 'c  and '  in the equation:

   'tan'   c                                          [14]

https://link.springer.com/article/10.1007/s00603-012-0281-7
https://link.springer.com/article/10.1007/s00603-012-0281-7
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The equivalent plane, in terms of major and minor principal stresses, is

defined by
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Figure 1: Relations between the major and minor principal stresses for Hoek-Brown

and equivalent Mohr-Coulomb criterion

The strength of the rock mass

The uniaxial compressive strength of the rock mass c

is given by

equation [6]. The failure begins at the edge of an excavation when c

is

exceeded by the stress induced by this limit.

The failure propagates from this initial point in a field of biaxial stress

and it finally stabilizes when the local strength, defined by the equation

[2], is the highest of the induced stresses '1 and 
'3

. Most of the

numerical models are able to follow this process of failure propagation
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and this level of detailed analysis is very important when considering the

stability of excavations in rock and in the design of support systems.

However, there are times when it is useful to consider the general

behavior of a rock mass rather than the process of failure propagation

detailed above. For example, when considering the resistance of a pillar,

it is more useful to have an estimate of the total resistance of the pillar,

rather than a detailed knowledge of the extent of the fracture

propagation in the pillar. This leads to the concept of global 'strength of

the rock mass' and Hoek and Brown have suggested that this could be

estimated from the relationship of Mohr-Coulomb:
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with 'c  and '  determined for the stress interval: 
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Determination of max3'

The problem of determining the appropriate value of max3'

 to use in the

equations 12 and 13 depends on the specific application. Two cases will

be studied:

1. Tunnels - where the value of max3'

is what gives equivalent

characteristic curves for the two failure criteria for deep tunnels

or equivalent settlement profiles for surface tunnels.

2. Slopes - here the calculated safety factor and the shape and

location of the failure surface must be equivalent.

For the case of deep tunnels, closed-form solutions for both Generalized

Hoek-Brown Criterion and Mohr-Coulomb Criterion have been used to
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generate hundreds of solutions and find the value of max3'

which gives

equivalent characteristic curves.

For surface tunnels, where the depth below the surface is less than 3

diameters of excavation, comparative numerical studies of the

measurement of failure and surface settlement have given a relationship

identical to what was obtained for the deep tunnels, provided that caving

in the surface is avoided.

The results of the studies for deep tunnels are represented in Figure 2 and

the equation inserted for both cases is:
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where  cm'

 is the strength of the rock mass, defined by the equation 17,
  is the unit weight of the rock mass, H is the depth of the tunnel below

the surface. In cases in which the horizontal stress is higher than the

vertical one, the value of the horizontal stress should be used instead of

H .
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Figure 2: Report for the calculation of max3'

for equivalent parameters of Mohr-

Coulomb and Hoek-Brown for tunnels.

The equation [18] applies to all underground excavations, which are

surrounded by a failure zone that does not extend to the surface. For

studies on issues such as the blocking of the excavation in the mines is

recommended that you do not attempt to correlate the parameters of

Hoek-Brown and Mohr-Coulomb, and the determination of the material

properties and the subsequent analyzes are based on only one of these

criteria.

Similar studies for slopes, using the circular failure analysis of Bishop

(1955) for a wide range of slopes geometries and properties of rock

masses have given:
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where H is the height of the slope.

1.3 Disturbance factor D

Experience in the design of slopes in large open pit mines has shown that

the Hoek-Brown criterion for rock masses in situ undisturbed (D = 0)

determines properties of the rock mass that are too optimistic. The

effects of the damage of loud explosion as well as stress relief due to the

elimination of the overburden are disruptive to the rock mass. It is

believed that the properties of the rock 'disturbed', D = 1 in equations [3]

and [4], are more appropriate for these rock masses.

Lorig and Varona (2000) have shown that factors such as the lateral

confinement produced by different radii of curvature of the slopes (in

plan) with respect to their height also influence the degree of

disturbance.

Sonmez and Ulusay (1999) have analyzed five slope failures in opened

coal mines in Turkey and have attempted to assign factors to each rock

mass based on their assessment of the rock mass properties predicted by

the Hoek-Brown criterion. Unfortunately, one of the slope failures slope

appears to be structurally controlled while another is constituted by a

https://it.scribd.com/document/187650932/Bishop-1955-The-Use-of-the-Slip-Circle-in-the-Stability-Analysis-of-Slopes
https://it.scribd.com/document/187650932/Bishop-1955-The-Use-of-the-Slip-Circle-in-the-Stability-Analysis-of-Slopes
https://www.researchgate.net/publication/247218977_Practical_slope-stability_analysis_using_finite-difference_codes
https://www.sciencedirect.com/science/article/abs/pii/S0148906299000431
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stack of waste transported. The authors believe that the Hoek-Brown

criterion is not applicable for these two cases.

Cheng and Liu (1990) report the results of back-analysis of very careful

deformation measurements, from strain gauges placed before the start of

the excavation in the cave of Mingtan in Taiwan. It was found that an area

damaged by the explosion extended for a distance of about 2 m around

all the big excavations. The calculated strength and the deformation

properties of the damaged rock mass give a equivalent disturbance

factor D = 0.7.

From these references it is clear that a large number of factors can

influence the disturbance degree in the rock mass surrounding an

excavation and that it could never be possible to precisely quantify these

factors. However, based on their experience and on an analysis of all the

details contained in these documents, the authors have tried to develop a

set of guidelines for the estimation of factor D, and these are shown in

Table 1.

The influence of this disturbance factor can be significant. This is shown

by a typical example in which 
Mpaci 50

, 
10im

and 45GSI . For

an in situ undisturbed rock mass surrounding an excavation to a depth of

100 m, with a disturbance factor D = 0, the equivalent friction angle is

 16.47'  while the cohesive force is Mpac 58.0' . A rock mass with

the same basic parameters, but in a slope more than 100 m in height,

with a disturbance factor D = 1, it has an equivalent angle of friction of

 61.27' and a cohesive force of Mpac 35.0' . 

Table 1: Guidelines for the estimation of the disturbance D 

Description of the

rock mass

Suggested value of

D

The excellent quality

of the controlled

explosion or

excavation through

the Tunnel Boring

Machine (TBM)

results into a 

D=0

https://www.sciencedirect.com/science/article/pii/B9780080420684500132
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Description of the

rock mass

Suggested value of

D

minimal disturbance

to the confined rock

mass surrounding an

excavation.

The manual or

mechanical

excavation in rock

masses of low

quality (without the

use of explosives)

translates into a

minimum

disturbance to the

surrounding rock

mass.

Where the

compression

problems are raised

in the significant

plan, the

disturbance can be

severe unless is

placed a temporary

basis.

D=0

D=0.5 

A non controlled

explosion  in an

excavation of hard

rock causes a severe

local damage, which

extends for 2 to 3 m

in the surrounding

rock mass.

D=0.8

An explosion of

small-scale cuts in

D=0.7
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Description of the

rock mass

Suggested value of

D

embankments for

civil engineering

works causes

modest damage to

the rock mass,

particularly if it is

used the controlled

burst. However, the

release of stress

causes some

disturbance.

Explosive with

controlled charges

D=1.0

Explosive with not

controlled charges

The slopes of the

very large open pit

mines suffer from a

significant

disturbance due to

the heavy explosion

and also due to

release the stress

generated by

removing the

overburden.

In some soft rock

excavation can be

performed through

ripping and dozing,

and the degree of

damage to the

slope is minor.

D=1.0

Use of explosives

D=0.7

Mechanized

excavation

1.4 Bearing capacity of foundations on rock

The bearing capacity of shallow foundations on rock applying
methods based on the failure criterion of Hoek and Brown
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The verification to limit states of the "soil-foundation" complex

according to the new legislation, concerns the assessment of the failure

mechanisms determined by the mobilization of the overall strength of

the materials. In particular, for each ultimate limit state the following

condition must be respected:

E
d
 

d

where Ed is the design value of the action or of the effect of the action,

Rd is the design value of the geotechnical system strength.

In this case, the foundations are made of rectangular elements with small

size of 3.0 m amounted to a depth of 1.5 m below ground level, or

directly resting on the rocky metarenite substrate.

For verification, since the foundation soils are stony rocks although

fractured, reference was made to the calculation methods proposed by

Carter and Kulhawy (1988) and by Serrano, Olalla and Gonzalez (2000),

both based on the failure criterion of Hoek and Brown, valid just for

shallow foundations on stone materials.

Method of Carter & Kulhawy

The ultimate bearing capacity of a rock mass can be written in the form:

   

 Nq ciu 

                                       [20]

where ci

  is the unconfined compressive strength of the intact rock and



N
is defined as bearing capacity factor. According to this criterion, the

ultimate bearing capacity of a rock mass is considered as a "fraction" of

the uniaxial compressive strength of the intact rock.

The resolution of Carter and Kulhawy refers to the theorem of the lower

limit, in which the stresses state must satisfy the equilibrium and must not

violate the plasticity conditions. The resolution of the problem can be

achieved by examining a load condition in which the rock mass is

considered as devoid of weight and is divided into two zones; in

particular in zone I, the rock being devoid of weight, the minor principal

https://www.researchgate.net/publication/262451998_Analysis_and_Design_of_Drilled_Shafts_Socketed_into_Rock
https://www.researchgate.net/publication/248164844_Ultimate_bearing_capacity_of_rock_masses_based_on_the_modified_Hoek-Brown_criterion
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stress 3

 coincides with the vertical direction, while the major principal

stress 1 coincides with the horizontal direction. In this zone the value of

the principal stress 1  is obtained from the general equation [2] by

putting 
03 

 and corresponds to the unconfined compression strength

resistance to compressive of the rock mass.

  
a

cic s 1'                                       [21]

In zone II, ie below the foundational structure, the 1 is vertical and is

equal to q
u
 (ultimate bearing capacity), while 3

, since the equilibrium

along the contact between zone I and zone II must be maintained,

assumes the value shown in equation 21.

Replacing the values of 1  and 3

shown in the formula of the general

failure criterion of Hoek and Brown, in correspondence of zone II is:

By simplifying and putting ci

 in evidence, we obtain:

  
   cibu ssmsq 







                                [22]

Equation [22] can be made ??consistent with the 20 puting:

  







ssmsN b 0

Where the symbol 0

N
 indicates that the rock mass is considered to be

devoid of weight. Equation [22, with the various parameters calculated

according to the types of rock masses presented by Hoek and Brown, is

used to produce the computation guidelines for the bearing capacity of

shallow foundations in rock masses in "AASHTO - Standard specification

for highway bridges."

Method of Serrano, Olalla and Gonzalez
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Serrano and Olalla (1998) and Serrano, Olalla and Gonzalez (2000) have

proposed a method for estimating the ultimate bearing capacity of

shallow foundations on rock masses. The calculation is based on the

theory of slip line developed by Sokolowsky and also uses the criterion

developed by Hoek and Brown. The expression that allows the

computation of the ultimate bearing capacity is the following:

   
 nnu Nq 





                                     [23]

where n  and n  are constants of the rock mass that depend on m
b
,  , s

and ci

 according to the following expressions:
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2
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cinn A  
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n
Am

s


The factor 

N
 can be determined graphically using the abacus provided

by Serrano et al. (2001), shown in the following figure:

https://www.sciencedirect.com/science/article/abs/pii/014890629500081X
https://www.researchgate.net/publication/248164844_Ultimate_bearing_capacity_of_rock_masses_based_on_the_modified_Hoek-Brown_criterion
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